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Abstract

The most remarkable trait of deep learning is the ability of deep artificial neural networks
to solve any problem they are trained upon according to their own, learnt and bespoke,
internal representation of it. This allows such models not to depend anymore on hand-
crafted features specified beforehand, and allows modellers to reach for solutions they
are not even able to foresee. Such advantage, however, does not come without a price
as a lack of control on the inner workings of the model may hinder generalisation or
give rise to bizarre idiosyncrasies. Additionally, these models are still far from having
attained an intuitive understanding of, and swift adaptability to, new unforeseen problem
variations — a quintessential trait of biological intelligence.

In this thesis, we will use the lens of representation learning to explore several failure modes
of deep learning models — sharing a common lack of robustness, flexibility, and adaptation
to the unexpected. We will also contextually develop semi-empirical methods to steer
model training towards safer, more compliant, predictable, and adaptable behaviour — by
making the role of the internal representation more explicit within the objective being
optimised, or by performing specific interventions on it. Applications will include the
development of models capable to withstand unforeseen adversarial perturbation of the
inputs, to adapt in the multi-task learning of geometrically challenging tasks, and to
optimise specific simulated quantum systems within a broad range of configurations.

We begin by considering the problem of adversarial vulnerability, i.e. the susceptibility
of trained deep learning models to behave unexpectedly towards failure in response
to legitimate inputs subject to a slight malicious perturbation. The main mitigations
in such respect require either extending the training set with incrementally corrupted
samples (adversarial training), or trying to revert the result of the perturbation before
feeding inputs to the model (input purification1) — both with their own merits and
neither definitive. We propose to merge the two approaches, in the context of image
classification, by having a generative model perform input purification before feeding the
result to an adversarially-trained classifier, conditionally on the internal representation
of the very same classifier. Since such arrangement is able to produce several different
input reconstructions, a custom aggregation function of the predicted classes is used to
ensemble them robustly. Our method, evaluated by standard robustness benchmarks,
is able to surpass the state-of-the-art for both either method considered alone, and the
trivial merge of the two.

We then investigate a significantly different setting — an application from physics —
1 Also known as input sanitisation.
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that still involves a system lacking adaptability to variations. In particular, we focus
on the propagation of radiation-induced energy-carrying excitations along a quantum

network. The setup is not arbitrary, as it can be used to model, e.g., the production of
an electric current from sunlight in photovoltaic systems or biological compounds that
enable photosynthesis-like processes. In such case, intrinsic properties of the system
make it maximally responsive only to a very specific frequency of the radiation incident
to it — inducing a significant loss of efficiency in the case of artificial systems of this kind.
We first develop a fully-differentiable computational simulation of these systems, then
identify few local components whose optimisation could enhance the efficiency of the
system w.r.t. nonresonant radiation, and finally optimise those by gradient-based methods
and algorithmic differentiation. Our key finding is that the introduction of driving terms
at the antenna/network and network/sink sites — whose harmonic composition is to be
learned online — allows for very fast and almost-optimal adaptation to incident radiation
of arbitrary frequency, bears a net positive energy balance, and scales well as network
size increases.

Along the same trajectory, and within the context of supervised multi-task learning, we
investigate the interplay between representation structure and amenability to very-few-

shot learning of new tasks. Indeed, the training of deep learning models requires copious
amounts of data, compute, and statistical trial-and-error. However, most often the results
of such process are oddly task-specific, brittle to slight variations in data distribution, and
scarcely transferable to new related but unforeseen objectives. While approaches relying
on transfer learning, continual learning, or fine-tuning do partially address such limitation,
they still require a significant amount of data and ad-hoc precautions to prevent the perils
of forgetting or overfitting. Identifying a crucial issue in the intermingling of structure
learning and task resolution, we propose a framework for multi-task representation
learning based on a non-linear generalisation of Koopman operator learning. After a
standard training phase, the resulting model allows for test-time incremental adaptation
to different similarly-grounded objectives — via the fitting of a minimal additional set of
parameters which act linearly on their input. Such adaptation is fast, relies on closed-form
parameter updates, and requires only a handful of iterations and the theoretical minimum
of examples from the new task.

Finally, we study the emergence of sparse ensembles in the latent representation of small
neural networks trained with the Forward-Forward algorithm — a recently introduced and
purportedly more biologically-plausible optimisation scheme alternative to Backpropaga-

tion. In such case, indeed, we observe the formation of highly sparse representations
organised in small neuron pools that selectively activate for specific input categories — a
landmark feature of activation patterns in sensory cortices. However, we also show that
such patterns can similarly emerge in models trained by Backpropagation, just driven by
the same objective as Forward-Forward learning. This suggests that the loss function
may play a role as crucial as the learning algorithm in the quest for biological plausibility
of learning machines.
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Chapter 1

Introduction

Artificial Intelligence (AI) is deeply permeating our society with transformative effects at
every scale [5, 6]. From technological innovation to social relationships, from corporate
organisation to entertainment, there is hardly any aspect it does not affect of how we work,
access knowledge, communicate, or take care of ourselves. In fact, systems based on AI
methods — Deep Learning (DL) in particular — have attained remarkable (and sometimes
super-human) success in tasks usually associated with higher cognitive functions: notably,
pattern recognition, decision-making, and generation of original content.

The enabling factors for such paradigmatic shift can be traced back to the convergence
of a growing abundance of easily-accessible training data, the availability of ever more
efficient hardware accelerators, and advances in artificial neural network research. Among
the latter, in particular, the development of deep architectures — able to jointly learn
a solution to the training task, and the most suitable featurisation of training data to
make it possible [7]. Once bound to a pre-defined choice of input features, statistical
learning techniques could now be applied directly to raw data, allowing them to discover
an effective hierarchical representation just by error minimisation.

Given the impressive results and the widespread adoption of such technology, one may
legitimately ask where’s the rub — and indeed there is. What stellar benchmark results
cannot tell is the fact that each of those top-performing models has been typically trained
from scratch, with a significant time and data budget, on that very task-specific task
alone. This usually applies also to the case of significantly similar (but still different)
tasks. And while transfer, continual, and fine-tuning learning techniques do exist and
mitigate the issue, particular care should be exercised during adaptation to a new task in
order to balance the effects of overfitting and forgetting (which can be catastrophic at
the worst).

Even though commonplace in the statistical learning community, such modus operandi is
strikingly different from how learning happens in humans — where fluid intelligence,
adaptability, and synthetic reuse of previous knowledge is paramount to the cognitive
prowess of humankind [8, 9].

In this thesis, we will explore, through the lens of representation learning, several aspects
that embody the crystallised nature of deep learning models. Contextually, we will
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develop or investigate novel semi-empirical approaches to mitigate such pitfalls, within
specific areas of application.

The rest of the document is structured as follows. In the next section 1.1, a general but
more analytical overview of our contributions is provided — concluding the Introduction.
In chapter 2, related works and elements of foundational background are provided — to
better appreciate the subsequent chapters — either in the form of a concise review, or
by pointing to relevant published material. Chapters 3, 4, 5, and 6 will analyse at much
greater depth each of the specific scenarios and applications considered, including the
novel methods or observations we propose. Chapter 7 summarises our findings and tries
to find a common ground to move forward, towards a more robust and adaptable artificial
intelligence. Appendices A, B, C, and D provide supplementary material for our results.

1.1 Contributions
The following section provides a summary of the main technical contributions of this
thesis, with emphasis on the aspects of novelty. A minimal overview of the setting will be
provided for context; the reader is however invited to refer to chapter 2 or to individual
chapters for a more comprehensive analysis. Paragraphs will be named according to the
topic of the contribution and the associated chapter.

1.1.1 Adversarial vulnerability & robustness (ch. 3)
It has been shown that deep learning models are susceptible to adversarial perturbations,
i.e. the addition of potentially small, imperceptible, malicious noise to otherwise legitimate
input data being ultimately able to significantly and catastrophically alter model behaviour
w.r.t. reasonable expectations [10–12]. Approaches to the mitigation of such pitfall
broadly belong to either adversarial training or adversarial purification. The former
technique consists in enriching the training dataset with perturbed inputs (eventually
associated with their pre-perturbation output); the latter aims at removing the effect of
the perturbation before such input is classified by the original model. As of today, only
adversarial training has proven to be significantly robust to attempts of tampering [13],
while still leaving ample margin for improvement.

In such regard, we speculate that the full representation of a model under attack would
provide more useful information to a defender compared to the input alone. In such
sense we develop a hybrid defence where such representation is directly used to recover
sanitised inputs and classify them robustly.

We assume an ℓ∞ white-box threat model and test our method in image classification
tasks against state-of-the-art adversarial training and purification approaches, giving
the attacker the greatest advantage possible. Still, with only a slight decrease in clean

accuracy, out technique results to be the most effective in comparison to either.

1.1.2 Optimisation of complex simulated physical systems (ch. 4)
Complex systems, i.e. physical systems with many non-trivially interacting parts, pervade
the description of our world — both natural and artificial — and many technological
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innovations rely on the hard task of obtaining a sufficiently precise control over them.
Among those there are photovoltaic systems [14, 15] — where incident electromagnetic
radiation (including, e.g., light) elicits the production of an electric current: this is the
case of compounds that allow photosynthesis-like processes in living organisms, or that
of materials enabling non-thermal energy harvesting from sunlight [16]. Most of those
systems, however, are maximally sensitive only to a narrowband of the emissive spectrum,
a crucial limitation to their efficient use.

We investigate the propagation of quantum excitations through several simplified photo-
voltaic system models, using the formalism of Markovian continuous time quantum walks

(CTQWs) [17] — and simulate their time evolution in a fully-differentiable fashion thanks
to the use of an algorithmic differentiation [18] software framework. We then identify
elements of the models where some form of external control can be enforced in an attempt
to make the system optimally responsive to arbitrary incident frequency, and finally
optimise dependant control parameters along the simulation by gradient-based methods
— akin to the training of a deep neural network.

Our most effective intervention — the addition of two driving oscillators whose amplitudes
and frequencies are to be learned online — allows fast adaptability of the system to even
strongly off-resonant frequencies, while maintaining a net positive energy balance and
being robust to initial condition variations.

1.1.3 Very-few-shot multi-task learning (ch. 5)

Despite the remarkable success of deep learning in a large variety of problems commonly
associated with human cognition, the typical approach to its use relies on establishing
a task (or set thereof) and training a model for it — should requirements mutate, train-
ing would need to be repeated. Such process is very often intensive in terms of time,
computation, and training data needed, making it a challenging endeavour. Approaches
to promote model adaptation to new tasks without model retraining do exist [19–23],
but still require abundant data and ad-hoc precautions to balance overadaptation to new
examples and forgetting of the old tasks [24]. This becomes especially evident when the
optimal representations required to solve different tasks, considered alone, are incom-
patible or conflicting [25]. Furthermore — especially in the case of AI-powered devices
and even on a single well-defined task — the deployment setup could be slightly different
from training, requiring minor but crucial adaptations in order to ensure the expected
behaviour.

As a novel approach to the problem, we develop a framework for multi-task representation
learning geared towards discrete-time dynamical systems that extends Koopman operator

learning [26–29]. In particular, each task — known during training, or unforeseen and
thus requiring adaptation — induces a dynamics whose atomic transition is described
by an affine operator. Such operators act on a task-agnostic embedding describing the
system state, and are modulated by a task-agnostic nonlinear term that accounts for
local variations of the dynamics — both to be learned jointly with tasks during training.
Test-time adaptation to new tasks relies only on few fast closed-form fitting iterations,
and requires the minimal number of examples.
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Preliminary tests on challenging visual geometrically-grounded tasks show that the
framework is able to learn a representation close to the theoretical optimum, while
also allowing robust generalisation and swift adjustment to new tasks of the same kind.
The same happens also when the state-space is partitioned across tasks, and variables
unrelated to the task are introduced.

1.1.4 Representations from Forward-Forward learning (ch. 6)
Cortical areas of the brain are characterised by sparse activation patterns and the emer-
gence of small pools of neurons that co-activate (only) in response to specific stimuli
[30, 31]. Additionally, it has been shown that neurons or ensembles thereof are able
to implement only a limited subset of mathematical or logical functions of their inputs.
Such behaviour seems to be at odds with the particular implementation of modern deep
learning architectures — implementing arbitrary nonlinearities and learning thanks
to algorithmic differentiation and the backpropagation [32] algorithm [33]. For such
reason, some alternatives to backpropagation have been proposed, in an attempt to
make learning of NNs more biologically-plausible. Among those, the Forward-Forward

algorithm [34], which relies on a contrastive-like [35] learning algorithm requiring only
two forward passes (on positive and negative data) and local per-neuron activation norm
maximisation/minimisation.

We investigate the structure of representations emerging in small neural networks tasked
with image classification, under the drive of such learning procedure. In particular, we
analyse their per-layer sparsity and excitatory/inhibitory balance, and look for the emer-
gence of class-associated ensembles. Interestingly, we discover that all these properties
[31, 36] — high sparsity, emerge of ensembles, and E/I balance — are aligned with the
behaviour of representations found in sensory cortices.

We additionally try to isolate the source of such peculiar behaviour: whether it is caused
by the learning algorithm, by the optimisation objective, or by the interaction of the
two. Curiously, we find out that much of the observed sparsity can be obtained also by
training an equivalent model by backpropagation — just on the same contrastive-like
objective proposed. The choice of the norm type in such objective has also an influence
on the result [37].



Chapter 2

Preliminaries

This thesis, as a whole, is predominantly concerned with the study of representations in
deep artificial neural networks, and with the development of novel techniques to address
some of their shortcomings. As such, it heavily relies on a large body of prior knowledge
and technical contributions from the very same machine learning and deep learning

communities it contributes back to. Additionally, the content of specific chapters inserts
within further specialised areas of research, with their own idiosyncratic developments
and conventions: it is the case, e.g., of chapter 4, dedicated to an application overarching
quantum information and the simulation of networked quantum systems.

Given the breadth of the subjects, a deep and detailed analysis of those preliminary
topics would result being lengthy, desultory, and ultimately out of scope for this work.
Nonetheless, references to essential bibliography and a succinct review of aspects deemed
essential to describe our contributions will be contained in this chapter.

2.1 General preliminaries
For a general overview of the field of (classical) machine learning, its core methodology,
and landmark techniques on which also the developments of deep learning build upon,
the reader can refer to Bishop [38]. For a more modern and nuanced take, broadly
linking the way of thinking typical of machine learning with probabilistic and Bayesian
reasoning, and with optimal decision-making, Murphy [39] and Barber [40] provide
a solid foundation. A renewed and expanded two-book version of the former is also
available [41, 42].

As far as post-20121 deep learning is concerned, Goodfellow, Bengio and Courville [44]
has now become the typical, although slightly outdated, reference on the topic. Prince [45]
provides instead an updated, cutting-edge introduction. For a more technical, hands-on
approach, the reader can refer to Zhang et al. [46].

Finally, for a deeper analysis of the phenomenological and mathematical foundations of
deep learning, including formal and specific (somehow niche) aspects, Hertz, Palmer and
1 The famous AlexNet paper [43] and convolutional neural network architecture are now conventionally

considered to have started the deep learning revolution at large.
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Krogh [47] provide an anticipatory seminal endeavour. A much more modern reference,
focusing on a structured mathematical foundation of the field has been instead built by
Petersen and Zech [48].

2.2 Preliminaries on adversarial attacks and defences
(ch. 3)

2.2.1 Related works
Adversarial training as a defence

The idea of training a model on adversarially-generated examples as a way to make it
more robust can be traced back to the very beginning of research on the vulnerabilities
of deep learning. In their seminal work, Szegedy et al. [11] propose to perform training
on a mixed collection of clean and adversarial data, generated beforehand.

The introduction of the Fast Gradient Sign Method (Fgsm) [49] enables the efficient
generation of adversarial examples along the training, with a single normalised gradient
step. Its iterative generalisation called Projected Gradient Descent (Pgd) [50] – discussed
in subsection 2.2.2 – significantly improves the effectiveness of the adversarial examples
produced, making it still the de facto standard for the synthesis of adversarial training
inputs [51]. Further incremental improvements have also been developed, some focused
specifically on robustness assessment (e.g. stepsize-adaptive variants, as by Croce and
Hein [52]).

The most recent adversarial training protocols further rely on synthetic data to increase
the numerosity of training datapoints [53–58], and adopt adjusted loss functions to
balance robustness and accuracy [59] or generally foster the learning process [56]. The
entire model architecture may also be tuned specifically for the sake of robustness
enhancement [57]. At least some of such ingredients are often required to reach the
current state-of-the-art in robust accuracy via adversarial training.

Purification as a defence

Among the first attempts of purification-based adversarial defence, Gu and Rigazio [60]
investigate the use of denoising autoencoders [61] to recover examples free from ad-
versarial perturbations computed against an image classifier. Despite its effectiveness
in the denoising task, the method may indeed increase the vulnerability of the system
when attacks are generated against it end-to-end [60], since the denoising process itself
can fall victim of the attack. The proposed improvement adds a smoothness penalty to
the reconstruction loss, partially mitigating such downside [60]. Similar in spirit, Liao
et al. [62] tackle the issue by computing the reconstruction loss between the last-layers
representations of the frozen-weights attacked classifier, respectively receiving, as input,
the clean and the tentatively denoised example.

In the work by Samangouei, Kabkab and Chellappa [63], Generative Adversarial Networks

(GANs) [64] learnt on clean data are used at inference time to find a plausible synthetic
example – close to the perturbed input – belonging to the unperturbed data manifold.
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Despite encouraging results, the delicate training process of GANs and the existence of
known failure modes [65] limit the applicability of the method. More recently, a similar
approach [66] employing energy-based models [67] failed to recover high-quality input
reconstructions [68].

Purification approaches based on (conditional) variational autoencoders include the
works by Hwang et al. [69] and Shi, Holtz and Mishne [70]. Very recently, a technique
combining variational manifold learning with a test-time iterative purification procedure
has also been proposed [71].

Finally, already-mentioned techniques relying on score- [72] and diffusion- based [68, 73]
models have also been developed, with generally favourable results – often balanced
in practice by longer training and inference times, and a much more fragile robustness
assessment [73, 74].

2.2.2 Technical aspects
PGD adversarial training

The task of determining model parameters θ⋆ that are robust to adversarial perturbations
of the inputs is cast in [50] as a min-max optimisation problem seeking to minimise
adversarial risk, i.e.:

θ⋆ ≈ θ̂⋆ := argmin
θ

E(x,y)∼D

[︃
max
δ∈S
L (f (x+ δ;θ) , y)

]︃
where D is the distribution on the examples x and the corresponding labels y, f(·;θ)
is a model with learnable parameters θ, L is a suitable loss function, and S is the set
of allowed constrained perturbations. In the case of ℓp norm-bound perturbations of
maximum magnitude ϵ, we can further specify S := {δ | ∥δ∥p ≤ ϵ}.
The inner optimisation problem is solved, by Madry et al. [50], by Projected Gradient

Descent (Pgd), an iterative algorithm whose goal is the synthesis of an adversarial per-
turbation δ̂ = δ(K) after K gradient ascent and projection steps defined as:

δ(k+1) ← PS
(︁
δ(k) + α sign

(︁
∇δ(k)Lce(f(x+ δ(k);θ), y)

)︁)︁
where δ(0) is randomly sampled within S, α is a hyperparameter (step size), Lce is the
cross-entropy function, and PA is the Euclidean projection operator onto set A, i.e.:

PA(a) := argmin
a′∈A

||a− a′||2 .

The outer optimisation is carried out by simply training f(·;θ) on the examples found
by Pgd against the current model parameters – and their original pre-perturbation labels.
The overall procedure just described constitutes Pgd adversarial training. We additionally
notice here that, when the number of iterations is fixed to 1 and δ(0) = 0, the resulting
procedure is also called Fgsm adversarial training [49].
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In this work, we will use the shorthand notation ϵp to denote ℓp norm-bound perturbations
of maximum magnitude ϵ.

(Conditional) variational autoencoders

Variational autoencoders (VAEs) [75, 76] allow to learn from data a generative distribution
of the form p(x, z) = p(x | z)p(z), where the probability density p(z) represents a prior
over latent variable z, and p(x |z) is the likelihood function, which can be used to sample
data of interest x, given z.

Training is carried out by maximising a variational lower bound, −LVAE(x), on the
log-likelihood log p(x) – which is a proxy for the Evidence Lower Bound (ELBO) – i.e.:

−LVAE(x) := Eq(z |x)[log p(x | z)]−KL(q(z |x)∥p(z))

where q(z |x) ≈ p(z |x) is an approximate posterior and KL(·∥·) is the Kullback-Leibler
divergence.

By parameterising the likelihood with a decoder ANN pθD(x |z;θD) ≈ p(x | z), and a
possible variational posterior with an encoder ANN qθE(z |x;θE) ≈ q(z |x), the para-
meters θ⋆

D of the generative model that best reproduces the data can be learnt – jointly
with θ⋆

E – as:

θ⋆
E,θ

⋆
D :=

argmin
(θE,θD)

LVAE(x) =

argmin
(θE,θD)

Ex∼D

[︂
−Ez∼qθE (z |x;θE) [log pθD(x |z;θD)] + KL(qθE(z |x;θE)∥p(z))

]︂

where D is the distribution over the (training) examples x.

From a practical point of view, optimisation is based on the empirical evaluation of
LVAE(x;θ) on mini-batches of data, with the term −Ez∼qθE (z |x;θE) [log pθD(x |z;θD)]
replaced by a reconstruction cost

LReco(x,x
′) ≥ 0 | LReco(x,x

′) = 0 ⇐⇒ x = x′ .

The generation of new data according to the fitted model is achieved by sampling from

pθ⋆
D
(x |z;θ⋆

D)

⃓⃓⃓⃓
z∼p(z)

i.e. decoding samples from the prior p(z).
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Conditional Variational Autoencoders [77, 78] extend VAEs by attaching a conditioning

tensor c – expressing specific characteristics of each example – to both x and z dur-
ing training. This allows the learning of a decoder model capable of conditional data
generation. In such case, conditional sampling is achieved by:

xcj ∼ pθ⋆
D
(x |z, c;θ⋆

D)

⃓⃓⃓⃓
z∼p(z); c=cj

.

2.3 Preliminaries on continuous-time quantum walks
(ch. 4)

As anticipated, chapter 4 is concerned with an application encompassing quantum inform-
ation and the simulation of open quantum systems in continuous time. Given the peculiar
shift in theoretical background required, we refer the reader to Griffiths and Schroeter
[79], and to Nielsen and Chuang [80], for canonical introductions to – respectively –
quantum mechanics and the more specific subfield of quantum information. Additionally,
Quarteroni, Sacco and Saleri [81] can be referred to for an overview on numerical integ-
ration methods for (partial) differential equations, including the Runge-Kutta method we
employ.

2.3.1 Technical aspects
In particular, in the chapter, we will be dealing with Continuous Time Quantum Walks

over graphs. We refer as such to quantum systems whose unitary time-evolution operator
is defined by:

U(t) := e−iH t

where t ∈ R represents time, i is the imaginary unit, and H = [Hij] is a Hamiltonian
matrix such that, given the directed graph G associated with the CTQW,

C ∋ Hij

⎧⎪⎨⎪⎩
∈ R, if i = j

̸= 0, if ∃ an edge in G linking vertices i and j

= 0, if ∄ an edge in G linking vertices i and j

We describe the generic state of the quantum system as |Ψ⟩ ∈ H, the element of a
corresponding Hilbert spaceH. With the Hamiltonian defined above, and calling |Ψt=0⟩
the state of the system at time t = 0, it is possible to obtain the state of the system |Ψt=t⋆⟩
at time t⋆ as |Ψt=t⋆⟩ = U(t⋆) |Ψt=0⟩.

The canonical choice for a CTQW Hamiltonian, which we use, relies on the adjacency
matrix A = [aij] of the associated directed graph G. In such case:
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R ∋ Hij =

{︄
κdi, if i = j

κaij, otherwise

where κ is an energy scale factor, and di is the degree of vertex i.

However, when models of this kind are utilised to describe complex or otherwise intract-
able phenomena whose site-specific energies are derived from observations or measured
experimentally, such direct interpretation of the network Hamiltonian is not always as
straightforward. This is the case, e.g., of the Fenna-Matthews-Olson complex as described
by Sgroi et al. [82].

A more detailed analysis of the formalism, together with a link with discrete-time quantum

walks is offered by M N and Brun [83].

In our specific case, we are interested in investigating the behaviour of the system
when in contact with an incident radiation of a given frequency, a sink able to absorb
quantum excitations travelling through the system, and under the effect of eventual
additional interventions. Thus, the system cannot be assumed to be closed. Describing
the propagation of excitations through the different parts of the system as the result
of a Markov process allows to describe time-evolution through a Gorini–Lindblad-type
master equation [84, 85].

2.4 Preliminaries on Koopman operator learning (ch. 5)

2.4.1 Technical aspects
In this subsection, we briefly introduce Koopman operator learning via dynamics embed-
ding [86, 87] — which constitutes the very foundation of the novel approach we will later
describe.

Let us consider a dynamical system in discrete time, with a well-defined and fully-
observable state x ∈ RN , time-step ∆t > 0, and subject to time-invariant dynamics. We
call xt the system state at a given time t and we are interested in predicting the state of
the system at a later time xt+∆t. The key assumption of the method is that there exist at
least one (potentially non-linear) change of coordinates α : RN → Rdk for system state
that renders the description of the dynamics linear across one time-step.

In such case, we want to find α : RN → Rdk and K ∈ Rdk×dk (a matrix) such that:

α(xt+∆t) = Kα(xt); ∀t.

As a result, the state at an arbitrary future time α(xt+n(∆t)) can be obtained as:

α(xt+n(∆t)) = Kn α(xt).

Eventually, K could also be made an affine (instead of linear) operator acting on α(xt),
with a similar time-evolution structure. The specific nature and parameterisation of α, as
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well as the fitting procedures or optimisation schemes required in general to determine
both α and K are beyond the scope of such short introductory exposition.

An aspect worth mentioning is that — for a given class of functions among which α has
to be chosen, as well as for arbitrary αs (even universal approximators) with a fixed dk
— not all possible dynamical evolutions of x are always learnable in an exact fashion.
This is the case e.g. of otherwise linearisable dynamical systems whose dynamics sharply
changes at specific states.

2.5 Preliminaries on Forward-Forward and neuronal
ensembles (ch. 6)

2.5.1 Related works
Forward-Forward

The Forward-Forward algorithm [34] is a recently proposed learning algorithm for ar-
tificial neural networks, whose main premise is the ability to overcome the notorious
biological implausibility of the Backpropagation algorithm [32]. In fact, while the effect-
iveness of Backprop makes it the standard algorithm for training neural networks, it is
based on biologically unrealistic assumptions that usually conflict with the local nature
of mutual neuron interaction, such as the need to propagate information forwards and
backwards through the network [37].
Forward-Forward owes its name to the fact that it replaces the backward pass with
an additional forward pass. The two forward passes are executed on different data,
named positive and negative data. During training, the objective of Forward-Forward is
to maximise a so-called goodness function of the neural activations (e.g. the ℓp norm) on
positive data and minimise it on negative data. In a simple image classification setting,
such as the one we adopt in this chapter, one could encode a class label at the border of
images, by one-hot encoding it with a white pixel (as shown in Figure 2.1). Following the
definition from Hinton [34], positive data are those for which the encoded label matches
the ground truth label, while the opposite holds for negative data. Layers are trained
separately and sequentially, and learn to discriminate between positive and negative data
by maximising and minimising their goodness, according to the data presented. Crucially,
activations are normalised before being passed to the subsequent layer, to prevent layers
from relying on the goodness computed by their predecessors. From the biological point
of view, normalisation is known to be a form of canonical neural computation [88]. At test
time, when a new unlabelled sample has to be categorised, many copies of the image are
created, each with a different one-hot encoded label. These are then fed into the neural
network to obtain a goodness score. Finally, the image gets classified in the category that
produced the maximum goodness value.

In the original Hinton [34], satisfactory classification results are reported on the standard
handwritten digit recognition dataset Mnist, with the definition of positive and negative
data described above, and using the ℓ2 or ℓ1 norm of activations as goodness function.
In a recent theoretical work, it has been analytically shown that, under somewhat mild
assumptions, sparsity emerges in Forward-Forward layers [90] as a consequence of optim-
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Figure 2.1: Example of datapoint from the MNIST dataset [89], prepared for Forward-Forward

learning, as described in Hinton [34]. Notice the 10-pixel-long stripe in the top-left

corner whose 3rd pixel (corresponding to class 3) has higher luminance than the

others.

ising the Forward-Forward loss. While these formal results are derived for single linear
layers considered alone, they offer a theoretical grounding for our experimental findings.
Recent studies inspired by the Forward-Forward learning procedure have expanded its
applicability across various architectures, notably achieving enhanced performance in
Convolutional Neural Networks (CNNs) [91, 92]. Additionally, other works have proposed
alternative goodness functions and explored the specific contributions of individual neur-
ons to the classification process, shedding light on the interpretability and adaptability of
the approach [93].

We illustrate properties of representations obtained in Forward-Forward networks, that
are reminiscent of what is found the neocortex and hippocampus, where ensembles of
a few number of units activate consistently in response to similar stimuli. We discuss
properties of neuronal ensembles in the following section.

Neuronal ensembles

In Neuroscience, neuronal ensembles are defined as sparse groups of neurons that co-
activate either spontaneously or in response to sensory stimuli. These ensembles, rather
than individual neurons, have long been proposed as emergent functional units of cortical
activity, playing critical roles in sensory processing, memory, and behaviour [30, 31, 94–
99]. Recent reviews, such as Yuste, Cossart and Yaksi [31], provide a comprehensive
overview of the concept and its implications.

The importance of ensembles has been increasingly corroborated by experimental studies,
enabled by advances in techniques like calcium imaging, which allow for simultaneous
recording of large-scale neural activity at single-cell resolution [100]. For example,
Miller et al. [30] demonstrated that, during visual processing, cortical spiking activity
is dominated by ensembles whose properties cannot be explained by the independent
activity of individual neurons. These ensembles are activated both by sensory stimuli
(e.g. visual inputs) and by spontaneous network activity, suggesting that they represent
intrinsic functional building blocks of cortical responses. Notably, single neurons often
participate in multiple ensembles, thereby enhancing the network’s encoding potential
[101, 102]. Further evidence from Yoshida and Ohki [103] showed that sparse ensembles
in the primary visual cortex (V1) are elicited by visual stimuli. Images can be decoded
reliably from the activity of a small subset of highly responsive neurons, with additional
neurons either failing to improve or even degrading decoding performance. These
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findings underscore the efficiency of sparse representations, likely facilitated by partially
overlapping receptive fields. This arrangement enables robust and efficient encoding
of visual information, making sparse ensembles an optimal strategy for downstream
processing.

The presence and functionality of ensembles are not limited to specific species or sensory
modalities. Studies in various animal models have revealed their role in diverse neural
processes [104, 105], and recent findings suggest they may even contribute to conscious
experience [106]. Moreover, ensembles have demonstrated remarkable stability over
time. For instance, Pérez-Ortega, Alejandre-García and Yuste [107] showed that neuronal
ensembles can persist for weeks, supporting their potential involvement in long-term
representations of perceptual states or memories.

Technological advancements have also enabled not just the visualization but the direct
stimulation of ensembles, allowing to “play the piano” with ensembles of neurons [99].
All-optical approaches, such as those described by Packer et al. [108] and Carrillo-Reid
et al. [98], have shown that repeatedly stimulating specific groups of neurons in V1
can imprint ensembles that remain spontaneously active even after a day. These im-
printed ensembles exhibit pattern completion, where activating a subset of neurons can
recall the entire ensemble. Remarkably, this effect persists long after the initial stimula-
tion, and experiments have demonstrated causal links between ensemble activation and
behaviour [99].

Finally, the concept of neuronal ensembles has inspired computational models. For
instance, Doi and Lewicki [109] demonstrated that sparse and redundant representations
are optimal for encoding natural images, particularly when neurons are unreliable, a
result corroborated by earlier studies [110, 111]. These computational frameworks align
with biological observations, suggesting that sparse ensemble representations are both
efficient and robust mechanisms for encoding sensory information.





Chapter 3

Blending adversarial training and
representation-conditional
purification via aggregation improves
adversarial robustness

3.1 Introduction
Vulnerability to adversarial attacks [10, 11] – i.e. the presence of inputs, usually crafted on
purpose, capable of catastrophically altering the behaviour of high-dimensional models
[112] – constitutes a major hurdle towards ensuring the compliance of deep learning
systems with the behaviour expected by modellers and users, and their adoption in
safety-critical scenarios or tightly-regulated environments. This is particularly true for
adversarially-perturbed inputs, where a norm-constrained perturbation – often hardly
detectable by human inspection [12, 113] – is added to an otherwise legitimate input,
with the intention of eliciting an anomalous response [114].

Given the widespread nature of the issue [115], and the serious concerns raised about the
safety and reliability of models learnt from data in the lack of appropriate mitigations
[116], adversarial attacks have been extensively studied. However, obtaining generally
robust machine learning (ML) systems remains a longstanding issue, and a major open
challenge.

Research in the field has been driven by two opposing yet complementary efforts. On
the one hand, the study of failure modes in existing models and defences, with the goal
of understanding their origin and developing stronger attacks with varying degrees of
knowledge and control over the target system [11, 49, 117, 118]. On the other hand, the
construction of increasingly capable defence mechanisms. Although alternatives have
been explored [119–122], most of the latter is based on adequately leveraging adversarial

training [49, 50, 53–57, 123–125], i.e. training a ML model on a dataset composed of
(or enriched with) adversarially-perturbed inputs associated with their correct, pre-

perturbation labels. In fact, adversarial training has been the only technique capable
of consistently providing an acceptable level of defence [51], while still incrementally
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improving up to the current state-of-the-art [56–58].

Another defensive approach is that of adversarial purification [70, 72], where a generative
model is used – similarly to denoising – to recover a safe version of the input before
classification is performed. Nonetheless, such attempts have generally fallen short of
expectations due to inherent limitations of the generative models used in early attempts
[68], or due to decreases in robust accuracy1 when attacked end-to-end [60, 74] – resulting
in subpar robustness if the defensive structure is known to the adversary [118]. More
recently, the rise of diffusion-based generative models [126] and their use for purification
have enabled more successful results of this kind [68, 73] – although at the cost of longer
training and inference times, and a much brittler robustness evaluation [73, 74].

In this chapter, we design a novel adversarial defence for supervised image classification,
dubbed Carso (Counter-Adversarial Recall of Synthetic Observations). The approach relies
on an adversarially-trained classifier (called hereinafter simply the classifier), endowed
with a stochastic generative model (called hereinafter the purifier). Upon classification
of a potentially-perturbed input, the latter learns to generate – from the tensor2 of
(pre)activations registered at neuron level in the former – samples from a distribution of
plausible, perturbation-free reconstructions. At inference time, some of these samples
are classified by the very same classifier, and the original input is robustly labelled
by aggregating its many outputs in the form of a normalised doubly-exponential logit
product. This method – to the best of our knowledge the first attempt to organically
merge the adversarial training and purification paradigms – avoids the vulnerability
pitfalls typical of the mere stacking of a purifier and a classifier [60, 74], while still being
able to take advantage of independent incremental improvements to adversarial training
or generative modelling.

An empirical assessment3 of the defence in the ℓ∞ white-box setting is provided, using a
conditional [77, 78] variational autoencoder [75, 76] as the purifier and existing state-of-

the-art adversarially pre-trained models as classifiers. Such choices are meant to give
existing approaches – and the adversary attacking our architecture end-to-end as part
of the assessment – the strongest advantage possible. Yet, in all scenarios considered,
Carso improves significantly the robustness of the pre-trained classifier – even against
attacks specifically devised to fool stochastic defences like ours. Remarkably, with a
modest clean accuracy penalty, our method improves by a significant margin the current
state-of-the-art for Cifar-10 [130], Cifar-100 [130], and TinyImageNet-200 [131] ℓ∞
robust classification accuracy against AutoAttack [52].

In summary, the chapter makes the following contributions:

• The description of Carso, a novel adversarial defence method synergistically
blending adversarial training and adversarial purification, thanks to representation-

conditional purification and a dedicated robust aggregation strategy;

• A collection of relevant technical details fundamental to its successful training and
1 The test set accuracy of the frozen-weights trained classifier – computed on a dataset entirely composed

of adversarially-perturbed examples generated against that specific model.
2 Which we call internal representation.
3 Implementation of the method and code for the experiments rely on PyTorch [127], AdverTorch [128],

and ebtorch [129].
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use, originally developed for the purifier being a conditional variational autoencoder

– but in principle not bound to such setting;

• An experimental assessment of the method, against standardised benchmark ad-
versarial attacks – showing higher robust accuracy w.r.t. to existing state-of-the-art

adversarial training and purification approaches.

The rest of the chapter is structured as follows. In subsection 2.2.1 we provided an
overview of selected contributions in the fields of adversarial training and purification-

based defences – with focus on image classification. In subsection 2.2.2, an introduction
was given to two integral parts of our experimental assessment: Pgd adversarial training
and conditional variational autoencoders. Section 3.2 is devoted to the intuition behind
Carso, its architectural description, and the relevant technical details that allow it to work
effectively. Section 3.3 contains details about the experimental setup, results, comments,
and limitations. Section 3.4 concludes the chapter and outlines directions of future
development.

3.2 Structure of CARSO
The core ideas informing the design of our method are driven more by first principles

rather than arising from specific contingent requirements. This section discusses such
ideas, the architectural details of Carso, and a group of technical aspects fundamental to
its training and inference processes.

3.2.1 Architectural overview and principle of operation
From an architectural point of view, Carso is essentially composed of two ANN models –
a classifier and a purifier – operating in close synergy. The former is trained on a given
classification task, whose inputs might be adversarially corrupted at inference time. The
latter learns to generate samples from a distribution of potential input reconstructions,
tentatively free from adversarial perturbations. Crucially, the purifier has only access to
the internal representation of the classifier – and not even directly to the perturbed input
– to perform its task.

During inference, for each input, the internal representation of the classifier is used by
the purifier to synthesise a collection of tentatively unperturbed input reconstructions.
Those are classified by the same classifier, and the resulting outputs are aggregated into a
final robust prediction.

There are no specific requirements for the classifier, whose training is completely inde-
pendent of the use of the model as part of Carso. However, training it adversarially
generally improves the robust accuracy of the overall system (see section A.3 for an
ablation study on that matter), also allowing it to benefit from established adversarial
training techniques.

The purifier is also independent of specific architectural choices, provided it is capable of
stochastic conditional data generation at inference time, with the internal representation
of the classifier used as conditioning.
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In the rest of the chapter, we employ a state-of-the-art adversarially pre-trained WideRes-
Net model as the classifier, and a purpose-built conditional variational autoencoder as
the purifier, the latter operating decoder-only during inference. Such choice was driven
by the deliberate intention to assess the adversarial robustness of our method in its
worst-case scenario against a white-box attacker, and with the least advantage compared
to existing approaches based solely on adversarial training.

In fact, the decoder of a conditional VAE allows for exact algorithmic differentiability [18]
w.r.t. its conditioning set, thus averting the need for backward-pass approximation [132]
in generating end-to-end adversarial attacks against the entire system, and preventing
(un)intentional robustness inflation by gradient obfuscation [132]. The same cannot be
said [73] for more capable and modern purification models, such as those based e.g. on
diffusive processes, whose proper robustness assessment is still in the process of being
thoroughly understood [74].

A downside of such choice is represented by the reduced effectiveness of the decoder
in the synthesis of complex data, due to well-known model limitations. In fact, we
experimentally observe a modest increase in reconstruction cost for non-perturbed
inputs, which in turn may limit the clean accuracy of the entire system. Nevertheless, we
defend the need for a fair and transparent robustness evaluation, such as the one provided
by the use of a VAE-based purifier, in the evaluation of any novel architecture-agnostic
adversarial defence.

A diagram of the whole architecture is shown in Figure 3.1, and its detailed principles
of operation are recapped below. Additionally, an ablation study investigating the need
for either the classifier or the purifier being trained on adversarially-perturbed inputs is
provided in section A.3.

Training

At training time, adversarially-perturbed examples are generated against the classifier, and
fed to it. The tensors containing the classifier (pre)activations across the network are then
extracted. Finally, the conditional VAE serving as the purifier is trained on perturbation-
free input reconstruction, conditional on the corresponding previously-extracted internal
representations, and using pre-perturbation examples as targets.

Upon completion of the training process, the encoder network is discarded, as it will not
be used for inference.

Inference

The example requiring classification is fed to the classifier. Its corresponding internal
representation is extracted and used to condition the generative process described by the
decoder of the VAE. Stochastic latent variables are repeatedly sampled from the original
priors, which are given by an i.i.d. multivariate Standard Normal distribution. Each
element in the resulting set of reconstructed inputs is classified by the same classifier,
and the individually predicted class logits are aggregated. The result of such aggregation
constitutes the robust prediction of the input class.
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Figure 3.1: Schematic representation of the Carso architecture used in the experimental phase

of this work. The subnetwork bordered by the red dashed line is used only during

the training of the purifier. The subnetwork bordered by the blue dashed line is

re-evaluated on different random samples zi and the resulting individual ŷi are

aggregated into ŷrob. The classifier f(·;θ) is always kept frozen; the remaining

network is trained on LVAE(x, x̂). More precise details on the functioning of the

networks are provided in subsection 3.2.1.

Remarkably, the only link between the initial potentially-perturbed input and the resulting
purified reconstructions (and thus the predicted class) happens through the internal

representation of the classifier, which serves as a featurisation of the original input. The
whole process is exactly differentiable end-to-end, and the only potential hurdle to the
generation of adversarial attacks against the entire system is the stochastic nature of the
decoding – which is easily tackled by Expectation over Transformation [133].

3.2.2 A first-principles justification
If we consider a trained ANN classifier, subject to a successful adversarial attack by means
of a slightly perturbed example, we observe that – both in terms of ℓp magnitude and
human perception [58] – a small variation on the input side of the network is amplified
to a significant amount on the output side, thanks to the layerwise processing by the
model. Given the deterministic nature of such processing at inference time, we speculate
that the collection of (pre)activation values within the network, along the forward pass,
constitutes a richer characterisation of such an amplification process compared to the
knowledge of the input alone. Indeed, as we do, it is possible to learn a direct mapping
from such featurisation of the input, to a distribution of possible perturbation-free input
reconstructions – in a way that takes advantage of such characterisation.

3.2.3 Hierarchical input and internal representation encoding
Training a conditional VAE requires [77] that the conditioning set c is concatenated
to the input x before encoding occurs, and to the sample of latent variables z right
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before decoding. The same is also true, with the suitable adjustments, for any conditional
generative approach where the target and the conditioning set must be processed jointly.

In order to ensure the usability and scalability of Carso across the widest range of input
data and classifier models, we propose to perform such processing in a hierarchical and
partially disjoint fashion between the input and the conditioning set. In principle, the
encoding of x and c can be performed by two different and independent subnetworks,
until some form of joint processing must occur. This allows to retain the overall archi-
tectural structure of the purifier, while having finer-grained control over the inductive
biases [134] deemed the most suitable for the respective variables.

In the experimental phase of our work, we encode the two variables independently. The
input is compressed by a multilayer convolutional neural network (CNN). The internal
representation – which in our case is composed of differently sized multi-channel images

– is processed layer by layer by independent multilayer CNNs (responsible for encoding
local information), whose flattened outputs are finally concatenated and compressed by
a fully-connected layer (modelling inter-layer correlations in the representation). The
resulting compressed input and conditioning set are then further concatenated and jointly
encoded by a fully-connected network (FCN).

In order to use the VAE decoder at inference time, the compression machinery for
the conditioning set must be preserved after training, and used to encode the internal
representations extracted. The input encoder may be discarded instead.

3.2.4 Adversarially-balanced batches
Training the purifier in representation-conditional input reconstruction requires having
access to adversarially-perturbed examples generated against the classifier, and to the
corresponding clean data. Specifically, we use as input a mixture of clean and adversarially
perturbed examples, and the clean input as the target.

Within each epoch, the training set of interest is shuffled [135, 136], and only a fixed
fraction of each resulting batch is adversarially perturbed. Calling ϵ the maximum ℓp per-
turbation norm bound for the threat model against which the classifier was adversarially
pre-trained, the portion of perturbed examples is generated by an even split of Fgsmϵ/2,
Pgdϵ/2, Fgsmϵ, and Pgdϵ attacks.

Any smaller subset of attack types and strengths, or a detailedly unbalanced batch
composition, experimentally results in a worse-performing purification model. More
details justifying such choice are provided in section A.1.

3.2.5 Robust aggregation strategy
At inference time, many different input reconstructions are classified by the classifier,
and the respective outputs concur to the settlement of a robust prediction.

Calling lαi the output logit associated with class i ∈ {1, . . . , C} in the prediction by the
classifier on sample α ∈ {1, . . . , N}, we adopt the following novel aggregation strategy:
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Pi :=
1

Z

N∏︂
α=1

ee
lαi

with Pi being the aggregated probability of membership in class i, Z a normalisation
constant such that

∑︁C
i=1 Pi = 1, and e Euler’s number.

Such choice produces a robust prediction much harder to overtake in the event that an
adversary selectively targets a specific input reconstruction.

The rationale leading to the choice of such specific robust aggregation strategy is an
attempt to answer to the following question: ‘How is it possible to aggregate the results
of an ensemble of classifiers in a way such that it is hard to tilt the balance of the ensemble
by attacking only a few of its members?’. The same reasoning can be extended to the
reciprocal problem we are trying to solve here, where different input reconstructions
obtained from the same potentially perturbed input are classified by the same model (the
classifier).

Heuristic analysis

Far from providing a satisfactory answer, we can analyse the behaviour of our aggregation
strategy as the logit associated with a given model and class varies across its domain, under
the effect of adversarial interventions. Comparison with existing probability averaging

and logit averaging aggregation strategies [137] should provide a heuristic justification
of our choice.

We recall logit averaging aggregation
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and probability averaging aggregation
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where Qα =
∑︁C

j=1 e
lαj .

Additionally, since lαi ∈ R,∀lαi , limx→−∞ ex = 0 and e0 = 1, we can observe that elαi > 0

and ee
lαi > 1,∀lαi .

Now, we consider a given class i⋆ and the classifier prediction on a given input recon-
struction α⋆, and study the potential effect of an adversary acting on lα

⋆

i⋆ . This adversarial
intervention can be framed in two complementary scenarios: either the class i⋆ is correct
and the adversary aims to decrease its membership probability, or the class i⋆ is incorrect
and the adversary aims to increase its membership probability. In any case, the adversary
should comply with the ϵ∞-boundedness of its perturbation on the input.
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Logit averaging

In the former scenario, the product of elαi terms can be arbitrarily deflated (up to zero) by
lowering the lα

⋆

i⋆ logit only. In the latter scenario, the logit can be arbitrarily inflated, and
such effect is only partially suppressed by normalisation by Z (a sum of 1/N-exponentiated
terms, N ≥ 1).

Probability averaging

In the former scenario, although the effect of the deflation of a single logit is bounded by
el

α⋆

i⋆ > 0, two attack strategies are possible: either decreasing the value of lα⋆

i⋆ or increasing
the value of Qα⋆ , giving rise to complex combined effects. In the latter scenario, the
reciprocal is possible, i.e. either inflating lα

⋆

i⋆ or deflating Qα⋆ . Normalisation has no effect
in both cases.

Ours

In the former scenario, the effect of logit deflation on a single product term is bounded
by ee

lα
⋆

i⋆ > 1, thus exerting only a minimal collateral effect on the product, through a
decrease of Z . This effectively prevents aggregation takeover by logit deflation. Similarly
to logit averaging, in the latter scenario, the logit can be arbitrarily inflated. However, in
this case, the effect of normalisation by Z is much stronger, given its increased magnitude
(addends are not 1/N-exponentiated, N ≥ 1).

From such a comparison, our aggregation strategy is the only one that strongly prevents
adversarial takeover by logit deflation, while still defending well against perturbations
targeting logit inflation.

The experimental assessment of our aggregation strategy, in the specific scenarios con-
sidered and against the more common probability averaging and logit averaging strategies,
is deferred to after the description of our experimental setup. As such, it is contained in
subsection 3.3.3.

3.3 Experimental assessment
Experimental evaluation of our method is carried out in terms of robust and clean image
classification accuracy within three different scenarios (a, b, and c), determined by
different classification tasks. The white-box threat model with a fixed ℓ∞ norm bound is
assumed throughout, as it generally constitutes the most demanding setup for adversarial
defences.

3.3.1 Setup
Data

The Cifar-10 [130] dataset is used in scenario (a), the Cifar-100 [130] dataset is used in
scenario (b), whereas the TinyImageNet-200 [131] dataset is used in scenario (c).
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Architectures

A WideResNet-28-10 model is used as the classifier, adversarially pre-trained on the
respective dataset – the only difference between scenarios being the size of the inputs,
and the number of output logits: 10 in scenario (a), 100 in scenario (b), and 200 in scenario

(c).

The purifier is composed of a conditional VAE, processing inputs and internal repres-
entations in a partially disjoint fashion, as explained in subsection 3.2.3. The input is
compressed by a two-layer CNN; the internal representation is instead processed layer-
wise by independent CNNs (three-layered in scenarios (a) and (b), four-layered in scenario

(c)) whose outputs are then concatenated and compressed by a fully-connected layer. A
final two-layer FCN jointly encodes the compressed input and conditioning set, after the
concatenation of the two. A six-layer deconvolutional network is used as the decoder.

More precise details on all architectures are given in section A.2.

Outer minimisation

In all scenarios, classifiers are acquired as pre-trained models, using publicly available
weights provided by the respective authors. Therefore, in scenarios (a) and (b), the
classifier is trained according to Cui et al. [56]; in scenario (c), according to Wang et al.
[55].

The purifier is trained on the VAE loss, using summed pixel-wise channel-wise binary cross-
entropy as the reconstruction cost. Optimisation is performed by RAdam+Lookahead
[138, 139] with a learning rate schedule that presents a linear warm-up, a plateau phase,
and a linear annealing [140]. To promote the learning of meaningful reconstructions
during the initial phases of training, the KL divergence term in the VAE loss is suppressed
for an initial number of epochs. Afterwards, it is linearly modulated up to its actual value,
along a fixed number of epochs (β increase) [141]. The initial and final epochs of such
modulation are reported in Table A.11.

Additional scenario-specific details are provided in section A.2.

Inner minimisation

ϵ∞ = 8/255 is set as the perturbation norm bound, as customary in the empirical ℓ-norm
adversarial robustness community [142].

Adversarial examples against the purifier are obtained, as explained in subsection 3.2.4,
by Fgsmϵ/2, Pgdϵ/2, Fgsmϵ, and Pgdϵ, in a class-untargeted fashion on the cross-entropy
loss. In the case of Pgd, gradient ascent with a step size of α = 0.01 is used.

The complete details and hyperparameters of the attacks are described in section A.2.

Evaluation

In each scenario, we report the clean and robust test-set accuracy – the latter by means
of AutoAttack [52] – of the classifier alone, and that of the corresponding Carso
architecture.
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For the classifier alone, the standard version of AutoAttack (AA) is used: i.e., the worst-
case accuracy on a mixture of AutoPgd on the cross-entropy loss [52] with 100 steps,
AutoPgd on the difference of logits ratio loss [52] with 100 steps, Fab [143] with 100
steps, and the black-box Square attack [144] with 5000 queries.

In the evaluation of the Carso architecture, the number of reconstructed samples per
input is set to 8, the logits are aggregated as explained in subsection 3.2.5, and the
output class is finally selected as the argmax of the aggregation. Due to the stochastic
nature of the purifier, robust accuracy is assessed by a version of AutoAttack suitable
for stochastic defences (randAA) – composed of AutoPgd on the cross-entropy and
difference of logits ratio losses, across 20 Expectation over Transformation (EoT) [133]
iterations with 100 gradient ascent steps each. In the specific case of scenario (a), we also
assess our method by the Pgd+EoT pipeline proposed by Lee and Kim [74], as explained
in subsection 3.3.2.

Computational infrastructure

All experiments were performed on an NVIDIA DGX A100 system. Training in scenarios

(a) and (c) was run on 8 NVIDIA A100 GPUs with 40 GB of dedicated memory each; in
scenario (b) 4 of such devices were used. Elapsed training time for the purifier in all
scenarios is reported in Table 3.1.

Table 3.1: Elapsed running time for training the purifier in the different scenarios considered.

Scenario (a) (b) (c)

Elapsed training time 159min 138min 213min

3.3.2 Results and discussion
An analysis of the experimental results is provided in the subsection that follows, whereas
their systematic exposition is given in Table 3.2. Results obtained by using deliberately
worse-performing pretrained classifiers, as well as a broader comparison with existing
adversarial defences from literature, are provided in section A.4.

Scenario (a)

Comparing the robust accuracy of the classifier model used in scenario (a) [56] with that
resulting from the inclusion of the same model in the Carso architecture, we observe
a +8.4% increase. This is counterbalanced by a −5.6% clean accuracy decrease. The
same version of Carso further provides a +2.42 robustness increase w.r.t. the current
best AT-trained model [58] that employs a ∼ 4× larger WideResNet-96-16 model.

In addition, our method provides a remarkable +9.72% increase in robust accuracy w.r.t.

to the best adversarial purification approach [145], a diffusion-based purifier. However,
the comparison is not as straightforward. In fact, the original paper [145] reports a
robust accuracy of 78.12% using AutoAttack on the gradients obtained via the adjoint
method [68]. As noted in Lee and Kim [74], such evaluation (which uses the version of
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Table 3.2: Clean (results in italic) and adversarial (results in upright) accuracy for the different

models and datasets used in the respective scenarios. The following abbreviations

are used: Scen: scenario considered; AT/Cl: clean accuracy for the adversarially-

pretrained model used as the classifier, when considered alone; C/Cl: clean accuracy

for the Carso architecture; AT/AA: robust accuracy (by the means of AutoAttack)

for the adversarially-pretrained model used as the classifier, when considered alone;

C/randAA: robust accuracy for the Carso architecture, when attacked end-to-end

by AutoAttack for randomised defences; Best AT/AA: best robust accuracy res-

ult for the respective dataset (by the means of AutoAttack), obtained by adversarial

training alone (any model); Best P/AA: best robust accuracy result for the respect-

ive dataset (by the means of AutoAttack), obtained by adversarial purification (any

model). Robust accuracies in round brackets are obtained using the Pgd+EoT [74]

pipeline, developed for diffusion-based purifiers. The best clean and robust accuracies

per dataset are shown in bold. The clean accuracies for the models referred to in the

Best columns are shown in Table A.14 (in section A.4).

Scen. Dataset AT/Cl C/Cl AT/AA C/randAA
(Pgd+EoT) Best AT/AA Best P/AA

(Pgd+EoT)

(a) Cifar-10 0.9216 0.8686 0.6773 0.7613
(0.7689) 0.7371 0.7812

(0.6641)

(b) Cifar-100 0.7385 0.6806 0.3918 0.6665 0.4267 0.4609

(c) TinyImageNet-200 0.6519 0.5632 0.3130 0.5356 0.3130

AutoAttack that is unsuitable for stochastic defences) leads to a large overestimation of
the robustness of diffusive purifiers. As suggested in Lee and Kim [74], Lin et al. [145]
re-evaluate the robust accuracy according to a more suitable pipeline (Pgd+EoT, whose
hyperparameters are shown in Table A.9), obtaining a much lower robust accuracy of
66.41%. Consequently, we repeat the same evaluation for Carso and compare the worst-
case robustness among the two. In line with typical AT methods, and unlike diffusive
purification, the robustness of Carso assessed by means of randAA remains lower w.r.t.

that achieved by Pgd+EoT.

Scenario (b)

Moving to scenario (b), Carso achieves a robust accuracy increase of +27.47% w.r.t. the
classifier alone [56], balanced by a−5.79% decrease in clean accuracy. Our approach also
improves upon the robust accuracy of the best AT-trained model [55] (WideResNet-70-
16) by +23.98%. In the absence of a reliable robustness evaluation by means of Pgd+EoT
for the best purification-based method [145], we still obtain a +20.25% increase in robust
accuracy upon its (largely overestimated) AA result.

Scenario (c)

In scenario (c), Carso improves upon the classifier alone [55] (which is also the best
AT-based approach for TinyImageNet-200) by +22.26%. A significant clean accuracy
toll is imposed by the relative complexity of the dataset, i.e. −8.87%. In this setting, we
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lack any additional purification-based methods.

Assessing the impact of gradient obfuscation

Although the architecture of Carso is algorithmically differentiable end-to-end – and the
integrated diagnostics of the randAA routines identified no pitfalls during the assessment
– we additionally guard against the eventual gradient obfuscation [132] induced by our
method by repeating the evaluation at ϵ∞ = 0.95, verifying that the resulting robust
accuracy stays below random chance [146]. Results are shown in Table 3.3.

Table 3.3: Robust classification accuracy against AutoAttack, for ϵ∞ = 0.95, as a way to

assess the (lack of) impact of gradient obfuscation on robust accuracy evaluation.

Scenario (a) (b) (c)

ϵ∞ = 0.95 acc. <0.047 <0.010 ≈0.0

3.3.3 Experimental justification of the robust aggregation strategy
To further corroborate the choice of the specific aggregation function described in sub-
section 3.2.5, we repeat the assessment of Carso under the same conditions described
in section 3.3, the only difference being the use of the alternative aggregation functions
analysed in subsection 3.2.5 (i.e. logit and probability averaging aggregation). Results, in
terms of both clean and robust accuracy, are shown in Table 3.4.

Table 3.4: Clean (results in italic) and adversarial (results in upright) accuracy for alternative

aggregation strategies used within Carso. The following abbreviations are used:

Scen: scenario considered; C/Cl (L.A.): clean accuracy of Carso with logit

average aggregation; C/randAA (L.A.): robust accuracy of Carso with logit

average aggregation, assessed by means of AutoAttack for stochastic defences;

C/Cl (P.A.): clean accuracy of Carso with probability average aggregation;

C/randAA (P.A.): robust accuracy of Carso with probability average aggreg-

ation, assessed by means of AutoAttack for stochastic defences; C/Cl: clean

accuracy of Carso with our proposed aggregation; C/randAA: robust accuracy

of Carso with our proposed aggregation, assessed by means of AutoAttack for

stochastic defences. Results from the last two columns mirror those of Table 3.2.

Scen. Dataset C/Cl (L.A.) C/randAA (L.A.) C/Cl (P.A.) C/randAA (P.A.) C/Cl C/randAA

(a) Cifar-10 0.8688 0.0086 0.8688 0.0092 0.8686 0.7613

(b) Cifar-100 0.6808 0.0436 0.6807 0.0439 0.6806 0.6665

In Table 3.5, we additionally provide the same clean and robust accuracy assessment for
the naive and non algorithmically-differentiable majority voting aggregation strategy. In
such regard, it is important to remark that the non-differentiability of majority voting
results in the vast portion (> 99%) of gradient samples used by AutoAttack being either
zero or not-a-number. Thus, the result of robustness assessment has to be considered
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Table 3.5: Clean (results in italic) and adversarial (results in upright) accuracy resulting from

the use of the majority vote aggregation strategy within Carso. The following ab-

breviations are used: Scen: scenario considered; C/Cl (M.V.): clean accuracy

of Carso with majority vote aggregation; C/randAA (M.V.): robust accuracy

of Carso with majority vote aggregation, assessed by means of AutoAttack for

stochastic defences. Almost the entirety of gradient samples computed by AutoAt-

tack has been deemed unreliable by integrated diagnostics, and the robust accuracy

results must be considered untrustworthy.

Scen. Dataset C/Cl (M.V.) C/randAA (M.V.)

(a) Cifar-10 0.8691 0.8602

(b) Cifar-100 0.6805 0.6698

unreliable – and not the mark of exceptional robustness – as almost exclusively the effect
of gradient obfuscation.

As we can see, the use of alternative aggregation strategies leads to minimal variations in
the clean accuracy attained, whereas the corresponding robust accuracy sharply decreases
– in the case of Cifar-10 even below random chance – as the attacks become increasingly
effective (or is unreliable, as it is the case for majority voting). Such results strongly
corroborate the use of the normalised doubly-exponential logit product proposed as the
aggregation strategy in subsection 3.2.5 and prove its central role in the overall adversarial
robustness and reliability of the method.

3.3.4 Limitations and open problems
In line with recent research aiming at the development of robust defences against multiple
perturbations [147, 148], our method produces a decrease in clean accuracy w.r.t. the
original model on which it is built upon – especially in scenario (c) as the complexity of
the classification task increases. This phenomenon is partially dependent on the choice
of a VAE as the generative purification model, a requirement for the fairest evaluation
possible in terms of robustness.

Yet, the issue remains open: is it possible to devise a Carso-like architecture capable of
the same – if not better – robust behaviour, which is also competitively accurate on clean
inputs? Potential avenues for future research may involve the development of Carso-like
architectures in which representation-conditional data generation is obtained by means
of diffusion or score-based models. Alternatively, incremental developments aimed at
improving the cross-talk between the purifier and the final classifier may be pursued.

Additionally, the scalability of Carso could be strongly improved by determining whether
the internal representation used in conditional data generation may be restricted to a
smaller subset of layers, while still maintaining the general robustness of the method.

Finally, a thorough investigation of the normalised doubly-exponential logit product ag-
gregation strategy needs to be undertaken in order to shed some light on the specific
mechanisms that lead to the much improved defensive capabilities of the system.
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3.4 Conclusion
In this chapter, we presented a novel adversarial defence mechanism tightly integrating
input purification, and classification by an adversarially-trained model – in the form of
representation-conditional data purification, followed by a specific logit aggregation. Our
method is able to improve upon the current state-of-the-art in Cifar-10, Cifar-100, and
TinyImageNet ℓ∞ robust classification, w.r.t. both adversarial training and purification

approaches alone.

Such results suggest a new synergistic strategy to achieve adversarial robustness in visual
tasks and motivate future research on the application of the same design principles to
different models and types of data.



Chapter 4

Driving enhanced exciton transfer by
automatic differentiation

4.1 Introduction
Complex systems are composed of several interacting components with a behaviour that
is not immediately predictable from the characteristics of its parts, and often exhibits
emergent phenomena. They include, among others, social [149, 150] and economic
structures [151, 152] as well as biological complexes [153, 154], and are currently the
subject of intense study: either to understand the emergence of new phenomena or as
tools to analyse real-world complex scenarios. Complex systems are nowadays receiving
much attention and study also in the quantum context [14]. In fact, it is now possible to
engineer and manipulate multipartite quantum systems in many experimental settings,
reaching sizes where their complexity becomes significant and practically relevant [15,
155]. Complexity has been thus identified as a precious resource for several quantum
tasks, ranging from communication to computation and metrological ones [156–159].

One paradigmatic example of complex quantum dynamics is that of continuous-time
quantum walks (CTQWs) [17], where a single quantum walker flows throughout a
physical system, represented by a complex network. CTQWs have been used to model
the excitation transfer in bio-molecule complexes [160–165], offering insight into the
intricate interplay between environmental effects, the network structure, and surviving
quantum features in determining the performance of the transfer process. In particular,
because of the dissipative role of the environment, fast excitation transfer is needed to
maximise its efficiency.

In this chapter, we investigate excitation transfer in complex networks with the purpose
of optimising transfer speed [166–168]. Inspired by the excitation transfer process in
a photovoltaic system, our goal is to describe, using a simple model, the absorption of
a photon, its conversion into an excitation, and subsequent transfer along a network.
We focus in particular on the case where two of the system components are subject
to an external driving, and make use of algorithmic differentiation and gradient-based
optimisation techniques to find the optimal driving.
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We find that such a relatively simple degree of control can greatly enhance the efficiency
of the process. We also find that such a novel approach can be coupled with previously
studied methods [82, 169] to yield better results compared to already optimised protocols.
Furthermore, the inclusion of an absorption mechanism (the antenna) allows us to have
a more general picture compared to the scenario typically considered in the literature
[169].

The engineering of protocols to enhance the transport efficiency in quantum networks
can be challenging due to the complex nature of the system. Moreover, while other
control strategies, such as changing the environmental dissipation or engineering the
network couplings, have been proven to be effective, their physical implementation
would be far from trivial or even unfeasible. On the other hand, enacting a local control
only on two of the system nodes would prove much more feasible at the experimental
level. Additionally, as we are implementing control on a fixed number of systems, the
number of parameters to optimise is constant regardless of the size of the network, while
the complexity of alternative optimisation strategies may scale unfavourably with the
network size.

This establishes a viable pathway to optimisation with the feature of being more compu-
tationally scalable than other strategies used in the past [170–173], making it a valuable
tool for future optimisation procedures in similar settings.

4.2 General settings and methods
We aim to describe an energy-transfer process that involves some radiation incident on
an antenna absorbing the incoming energy and converts it into an excitation transmitted
across a network [174]. The N th site of the latter is assumed to be connected to a sink-like

system, where the excitation is stored. In modelling such elements, we must strike a
delicate balance between accuracy and simplicity to ensure the possibility of grasping an
intuition of the physics underpinning the overall process.

A sketch of the arrangement we consider, where both the antenna and the sink are mod-
elled as two-level systems, is shown in Figure 4.1. The incoming radiation is considered
as a single mode, represented by a harmonic oscillator initially in its first excited state.
This oscillator interacts through a hopping interaction with the antenna and excites it.
The antenna is then connected to the first site of a network with N sites. For the network,
we choose to work in the subspace of a single excitation, which significantly reduces the
dimension of the Hilbert space (which is N +1, compared to 2N , for a network comprised
by N two-level systems). The choice of the single excitation subspace is customary in
the CTQWs literature [17, 82, 160, 161, 163, 169], and justified whenever there is low rate
of absorption, which is the case in light harvesting systems. We also include non-unitary
terms in the network to account for possible local dephasing. Finally, the last site of the
network is connected to a two level system through non-unitary dynamics. This serves
as the sink because, in transport phenomena, the excitation is typically absorbed upon
reaching its destination. Thus we model the interaction with the sink as an irreversible
decay channel, meaning that once the excitation reaches the sink, it cannot return to the
network.
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The Bohr frequency of the antenna and the energy of the last site of the network will
generally be time-dependent. The reason for maintaining such a time dependence is
that, as we will discuss in detail, one possible way to increase energy transfer along the
network is to introduce suitable time-dependent drivings.
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)

εN(t)

Figure 4.1: Schematic of the model. One mode of the radiation interacts with the antenna

(subscript ‘a’), exciting its ground state. The excitation then jumps to the first site of

the network and travels through it, up to the last site (N ), which is connected to a

sink (subscript ‘s’).

Accordingly, the model is described by a Lindblad Master Equation [84, 85] of the form:

dρ̂(t)

dt
= − i

ℏ

[︂
Ĥ, ρ̂(t)

]︂
+ LN [ρ̂(t)] + LS[ρ̂(t)],

where the Hamiltonian is a sum of several contributions:

Ĥ = ĤR + ĤA(t) + ĤN(t) + ĤAR + ĤA1.

The Hamiltonian of the single radiation mode with frequency ωr is ĤR = ℏωrâ
†â. The

Hamiltonian of the antenna is that of a simple two-level system, i.e.

ĤA(t) = ℏωa(t) (|ea⟩⟨ea| − |ga⟩⟨ga|) ,

where |ea⟩ =
(︃
1
0

)︃
and |ga⟩ =

(︃
0
1

)︃
are the excited and ground state.

We take the frequency ωa(t) to be the time-dependent function

ωa(t) = ωa +
R∑︂
i=1

Ai sin(νi t+ ϕi)

with ωa the Bohr frequency of the |ea⟩ ↔ |ga⟩ transition in the absence of any modula-
tion, and Ai, νi, ϕi real parameters that enter the harmonic-based decomposition of the
modulation strategy that we will aim at optimising.

The Hamiltonian of the network is given by

ĤN =
N−1∑︂
i=1

εi|i⟩⟨i|+ εN(t)|N⟩⟨N |+
N∑︂

i̸=j=1

Vij (|i⟩⟨j|+ |j⟩⟨i|) ,
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where εi are the energies of the sites and Vij the couplings of the interaction between
sites i and j. The last site N , which is connected to the sink, has an energy which can be
time-dependent to allow the introduction of a driving, which similarly to Eq. Figure 4.2
takes the form

εN(t) = εN +
R∑︂
i=1

Bi sin(µi t+ θi),

with εN , Bi, µi, and θi real parameters. Note that the Hilbert space of the network, in
addition to the N states representing its sites, contains also a vacuum state |0⟩ with
energy ε0 = 0 that does not interact with any other site of the network. This site
essentially represents the absence of excitations in the network, and it only interacts
with the antenna. The reason for its introduction is that, contrary to what is typically
done where one assumes that the excitation is in the first site of the network at time
t = 0, here we are also modelling the absorption of the excitation. Hence, we need a
state representing the absence of excitation in the network, which we model by adding
an additional site that does not interact with the others.

The radiation-antenna and antenna-network interactions are described by

ĤAR = λar|ea⟩⟨ga| ⊗ â+ h.c. and ĤA1 = λa1|ea, 0⟩⟨ga, 1|+ h.c.,

respectively. Such hopping Hamiltonians rule the coherent transfer of excitations between
the radiation mode and the antenna (at rate λar), and between the antenna and the first
site of the network (at rate λa1).

Going back to Eq.displaymathFigure 4.2, we introduce the incoherent term

LS[ρ̂] = λsN

(︃
Pgs,N |es, 0⟩⟨es, 0| −

1

2
{|gs, N⟩⟨gs, N |, ρ̂}

)︃
,

with Pgs,N = ⟨gs, N |ρ̂|gs, N⟩ the population of state |gs, N⟩ of the sink-site N compound.
This describes the one-way mechanism through which an excitation populating site N is
transferred to the sink at a rate λsN . We also have the local dephasing mechanism

LN [ρ̂] = λN

(︄
N∑︂
j=1

|j⟩⟨j|ρ̂|j⟩⟨j| − ρ̂

)︄
with |j⟩ representing the state where site j of the network is populated, and λN the
dephasing rate, assumed for simplicity to be the same for all sites.

In the next section, we will study several ways to improve excitation transfer from the
radiation to the sink. In all the case-studies, we will take as initial state

ρ̂(0) = |1r⟩⟨1r| ⊗ |ga⟩⟨ga| ⊗ |0⟩⟨0| ⊗ |gs⟩⟨gs|,
i.e. the oscillator is in its first excited state and all other elements of the model are in
their ground state.

We evolve this state, using a fourth-order Runge-Kutta method (see [175], p. 215), ac-
cording to Eq. Figure 4.2 for different networks. Then, we optimise different sets of
parameters in order to maximise the probability that the excitation reaches the sink in
the shortest time.
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4.3 Analysis and results
The model introduced in the previous section depends on many potentially tunable
parameters. In what follows, we will optimise subsets of these parameters (keeping the
remaining fixed), to maximise the time-integrated probability that an excitation reaches
the sink within a given time.

We focus on three choices for the parameters to be optimised. In the first case, we optimise
the drivings ωa(t) and εN(t); in the second case, the couplings λar and λa1; in the last
case, the energies of the network εi. In each of those cases, we compare the setting in
which selected parameters are optimised, with the corresponding unoptimised scenario.

Parameter optimisation is carried out using gradient-based methods, relying on automatic
differentiation [18] provided by the Python library PyTorch [127] and using the Adam

optimiser [176]. Specifically, the learning rate of the optimiser has been chosen in a
case-dependent fashion, according to the empirical complexity of the loss landscape
[177].

In detail, the parameters are optimised in such a way to maximise the time-integrated
probability for the excitation to reach the sink, i.e.

IP (TL) :=

∫︂ TL

0

psink(t) dt,

where psink(t) = Tr[|es⟩⟨es|ρ̂(t)] with ρ̂(t) the total density matrix at time t, |es⟩⟨es| the
projector on the excited state of the sink and TL the time of evolution used as part of the
optimisation of the parameters. The rationale for such a choice is that by maximising
IP (TL) instead of the final probability psink(TL), we can identify a set of parameters
that not only maximises psink(TL), but also favours solutions where psink(t) increases
significantly at earlier times, i.e., those where the excitation reaches the sink more quickly.

We perform our analyses on three different types of network: one describing a nearest
neighbour (NN) interaction, a star network (SN) where one of the sites is connected to
all the others, and one modelling the Fenna–Matthews–Olson (FMO) complex [16, 178].

4.3.1 Nearest neighbour network
We start by considering the case of a NN network, which has the Hamiltonian:

HN =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 ... 0 0 0
0 0.5 1 ... 0 0 0
0 1 0.5 ... 0 0 0
... ... ... ... ... ... ...
0 0 0 ... 1 0.5 1
0 0 0 ... 0 1 0.5

⎞⎟⎟⎟⎟⎟⎟⎠ .

The remaining parameters used in the simulation are summarised in Table 4.1. The
coupling strengths λar and λa1 were set equal to ωa to match the network’s energy scale.
Network dimensions were chosen as N = 4, 8 to balance complexity and computational
feasibility. The dephasing strength was set to λN = 0.1ωa to remain in the weak coupling
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ωaTL ωaT ωr/ωa N λar/ωa
λa1/ωa

λN/ωa
λsN/ωa

30 1200 {0.264, 15} {4, 8} 1 1 0.1 0.05

Table 4.1: Values of model parameters used to run the simulations; times are in units of ω−1
a

and frequencies in units of ωa. TL is the evolution time used within the optimisation

process; after optimisation, we test the performance of the learned system by evolving

it further up to time T ; ωr is the frequency of the radiation, ωa the Bohr frequency

of the antenna (when there is no driving), N the number of sites in the network,

λar and λa1 the values of the couplings (when not optimised), λN the value of the

dephasing constant and λsN the value of the sink constant.

regime, ensuring the validity of the Lindblad (Markovian) model. The sink interaction
strength λsN = 0.05ωa was chosen to keep its influence on excitation transfer minimal.
The value ωr = 0.264ωa was optimized for maximal exciton transfer while keeping
network parameters fixed (resonant condition). To test our strategies, we also considered
ωr = 15ωa, significantly detuned from resonance. We set ℏ = 1, and therefore the
parameters with the dimension of an energy are expressed in units of ωa; times are
expressed in units of ω−1

a . We choose as the initial state the one specified in Eq. Figure 4.2.

All simulations are run for a total time of T = 1200, which is significantly longer than
the evolution used within the optimisation process (TL = 30). In fact, we verified that a
further increase in TL does not result in any significant improvement in the integral of
sink probability. The coupling to the sink λsN is taken to be an order of magnitude smaller
than all other couplings to limit the resulting Zeno effect, which would significantly
influence the flow of excitation along the network.

We start by considering a network with N = 4 sites and an incident radiation with a
frequency of ωr = 0.264. This baseline value is chosen as it maximises the value of
IP (TL) in Eq. section 4.3 for the parameters shown in Table 4.1.

Figure 4.2(A) shows the probability of the excitation reaching the sink as a function of
time, comparing the case without any optimisation (grey curve) to the cases where the
driving parameters (red curve), the couplings (yellow curve) and the network energies
(blue curve) are optimised. We see that none of the three optimisation strategies is
particularly effective compared to the baseline, because ωr = 0.264 is already optimal.
One might argue that, by considering more complex drivings where more terms (R > 1)
are accounted for in the series in Eqs. (4.2) and (4.2) the performance could potentially
improve.

We found out that this is not the case and that, interestingly, increasing the number of
terms in the drivings up to R = 7 (corresponding to a total of 21 real parameters to
learn for each driving term) the network after optimisation performs worse than the
original. This behaviour is probably due to the significant increase of the complexity of
the solutions landscape and therefore to a more difficult optimisation problem.

We now turn to a more interesting case by selecting a different frequency for the incident
radiation, ωr = 15. This particular value is chosen to be significantly different from the
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Figure 4.2: Comparison among unoptimised network, optimised driving (with R = 1 in

Eqs.displaymathFigure 4.2 and Figure 4.2), optimised coupling, and optimised ener-

gies for a NN network of N = 4 sites. (A) Probability of reaching the sink when

the frequency of the mode is ωr = 0.264 (resonant case): the improvement w.r.t.

the unoptimised network is minimal with all the three methods. (B) Probability of

reaching the sink when the frequency of the mode is ωr = 15 (off-resonant case): the

improvement is relevant when optimising the couplings or the drivings. (C) Ratio

between the probability of reaching the sink with the three optimisation strategies

and the probability of reaching the sink without optimisation, in the off-resonant

case (ωr = 15).

baseline at ωr = 0.264, at which the network is known to perform well. By using an
incident photon with significantly higher energy, we expect it to be far off-resonance,
making the optimisation of tunable parameters, or the introduction of external driving,
way more effective. Figure 4.2(B) shows that this is the case. In fact, the probability of
reaching the sink is increased by more than an order of magnitude when the drivings or
the couplings are learnt (see Figure 4.2(C)). On the other hand, optimising the network
energies is not so effective, as shown by the dotted blue line in Figure 4.2(C).

To further test the strategy based on introducing and optimising drivings, we studied how
it changes by increasing the number of terms in the drivings R = 1, 2, 7 or by considering
network of different sizes N = 4, 6, 8. As one can see in Figure B.1(A) of Appendix 1,
no sensible improvement is reached by increasing R. Also, as shown in Figure B.1(B) of
Appendix 1, the conclusions we draw for the case N = 4 are qualitatively confirmed for
larger networks, showing that driving optimisation is effective over larger networks.

Moreover, we tested all three methods under increasing levels of noise. In Figure B.1(C) of
Appendix 1, we repeated the same analysis as in Figure 4.2(B), but with λN = 1 (instead
of 0.1), finding no significant differences. We then focused on optimising only the driving,
for increasing levels of noise (λN = 0.1, 1, 100). The results presented in Figure 4.3
demonstrate that driving optimisation remains highly effective. They also reveal an
interesting phenomenon: increasing noise levels in an unoptimised system may lead to
a higher integrated sink probability. This appears to be an instance of noise-assisted
transport [179].

4.3.2 Star Network
In this section we consider a different type of network, called star network (SN), where
one of the sites (the second, in our case) is connected to all the others. The goal of such
an analysis is to check whether the conclusions reached in the previous scenario also
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Figure 4.3: (A) Probability of reaching the sink for unoptimised network (Unopt.) and

one where the drivings where optimised (Opt.) (ωr = 15 and R = 1 in

Eqs.displaymathFigure 4.2 and Figure 4.2). The simulation were run for differ-

ent values of the dephasing parameter λN = 0.1, 1, 100. (B) Ratio between the

probability of reaching the sink with the driving optimisation and the probability of

reaching the sink without optimisation for the three values of λN (being ωr = 15
and R = 1 kept constant).

extend to other network setups.

The Hamiltonian of the star network is:

Hstar =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0.5 1 0 0 0 0 0
0 1 0.5 1 1 1 1 1
0 0 1 0.5 0 0 0 0
0 0 1 0 0.5 0 0 0
0 0 1 0 0 0.5 0 0
0 0 1 0 0 0 0.5 0
0 0 1 0 0 0 0 0.5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Figure 4.4(A) illustrates that, unlike in the NN network, more than one driving term is
required for optimal results, i.e. R > 1. However, the number of terms remains relatively
small, as we observe a significant improvement with just R = 2.

In Figure 4.4(B) and (C) we compare the performance of the unoptimised network against
those reached by optimising energies, coupling, and drivings (with R = 2). The results
confirm the conclusions obtained for the NN network: optimising drivings or couplings
is a better strategy than optimising the energies of the network.

4.3.3 FMO
In this section, we examine our final and more structured network, based on the Hamilto-
nian of the FMO complex [16, 178]. While a proper description of the FMO dynamics
would require, among other things, properly accounting for non-Markovian effects [180,
181], we simply use it as an example of a more realistic network
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Figure 4.4: Comparison among unoptimised network, optimised driving, optimised coupling,

and optimised energies for a SN network of N = 8 sites in the off-resonant

case ωr = 15. (A) Probability of reaching the sink for the unoptimised network

(grey continuous line) and when increasingly expressive drivings (R = 1, 2, 7, see

Eqs.displaymathFigure 4.2 and Figure 4.2) are introduced and optimised (red lines).

(B) Probability of reaching the sink for an unoptimised network, optimised driving

with R = 2, optimised coupling, and optimised energies. The line corresponding

to an optimised driving with R = 2 is the same as from (A). (C) Ratio between

the probability of reaching the sink with the three optimisation strategies and the

probability of reaching the sink without optimisation.

The network Hamiltonian is that found in [82], where the energies are already optimised
(see Eq. (A1) of Appendix 1 in [82]):

HN =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 65.7 −104.1 5.1 −4.3 4.7 −15.1 −7.8
0 −104.1 −11.1 32.6 7.1 5.4 8.3 0.8
0 5.1 32.6 −56.1 −46.8 1.0 −8.1 5.1
0 −4.3 7.1 −46.8 −36.2 −70.7 −14.7 −61.5
0 4.7 5.4 1.0 −70.7 −30.6 89.7 −2.5
0 −15.1 8.3 −8.1 −14.7 89.7 55.7 32.7
0 −7.8 0.8 5.1 −61.5 −2.5 32.7 4.2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Most of the conclusions drawn for the previous networks also apply to the FMO. For
instance, when we compare the performance of the unoptimised system to cases where
we optimised energy, coupling, or driving at the frequency that already maximises the
probability of reaching the sink (in this case, ωr = 0.242), we observe no significant
improvements (data not shown).

Additionally, Figure 4.5(A) shows that the driving with one term (R = 1) is not very
effective whereas just adding one term (R = 2) greatly improves the performance.

In Figure 4.5(B) and (C) we compare the performance of the unoptimised network against
those reached by optimising energies, couplings and drivings (with R = 2). The improve-
ment is even more remarkable when one considers that the Hamiltonian of the network
HN in Eq. subsection 4.3.3 was explicitly optimised along the diagonal to maximise
exciton transfer in [82].

Also, from the same figures we see that couplings optimisation, differently from the
other networks, performs significantly worse than driving optimisation with R = 2. This
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Figure 4.5: Comparison among unoptimised network, optimised driving, optimised coupling,

and optimised energies for the FMO network in Eq. subsection 4.3.3 in the off-

resonant case ωr = 15. (A) Probability of reaching the sink for the unoptimised net-

work (grey continuos line) and when increasingly expressive drivings (R = 1, 2, 7,

see in Eqs.displaymathFigure 4.2 and Figure 4.2) are introduced and optimised (red

lines). (B) Probability of reaching the sink for an unoptimised network, optimised

driving with R = 2, optimised coupling, and optimised energies. The line corres-

ponding to an optimised driving with R = 2 is the same as from (A). (C) Ratio

between the probability of reaching the sink with the three optimisation strategies

and the probability of reaching the sink without optimisation.

analysis suggests that the optimisation of the drivings can be more effective than that of
the couplings, especially when complex networks are considered.

4.4 Discussion
In this chapter, we investigated the excitation-transfer process across different types of
network. In particular we explicitly modelled the radiation-antenna interaction at the
absorption stage, and focused on the possible effect of driving on both the antenna and
the target site. Using state-of-the-art automatic differentiation tools and gradient-based
optimisation algorithms, we determined the parameters of the system that maximise the
efficiency of the transport, as quantified by the time-integrated probability of reaching
the sink.

Our analysis shows that optimising the coherent couplings between, respectively, the
antenna and the incoming radiation – and the antenna and the first site of the network –
is effective for simpler networks like NN and SN, but not for more complex networks
such as the one associated with the FMO. On the other hand, introducing and optimising
external drivings leads to a significant enhancement in excitation transfer across all
network types and dimensions. Importantly, a small number of driving terms is sufficient
to achieve near-optimal efficiency in all considered scenarios: indeed the increase in
excitation transfer efficiency in the off-resonant case amounts to more than an order
of magnitude compared to the undriven case. This could be relevant in the context of
energy harvesting, where a tunable device, capable of efficiently absorbing excitations
in a range of several frequencies, is desirable. A deeper understanding of the physical
reasons for which learning the couplings is less efficient than introducing and learning
optimal drivings will be the focus of future research. Moreover, we expect the driving
of the local energies to be more experimentally feasible (e.g. by the modulation of an
external field) than acting on the couplings, which might be a more challenging task,
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also depending on the specific experimental platform one has in mind – which is not
available yet, and we hope this work will help to establish.

Our analysis concludes that significant enhancement in energy transfer within complex
networks can be achieved by applying simple driving modulation at both the start
and end of the network. This approach proves especially effective under strong off-
resonant conditions between the incoming light and the system, and the practicality
of implementing such drivings makes our findings valuable and broadly applicable for
optimising energy transfer processes. Our study paves the way for further research in this
direction, particularly to assess the robustness of our strategy across different regimes. A
relevant direction in this respect is the incorporation of memory effects in the dynamics,
due for example to comparable time scales between system and environmental evolutions
– as commonly encountered in the energy transfer in photosynthetic processes. Moreover,
a complete characterization of the practical utility of our strategy will require evaluating
the energetic cost of the driving that enhances the excitation transfer, compared to the
energetic cost of competing strategies.





Chapter 5

Towards very-few-shot structured
supervised multi-task learning

5.1 Introduction
Among the very central pursuits of Artificial Intelligence there is the attempt to replicate
behaviours traditionally associated with higher human cognitive functions, such as the
ability to extract meaningful features from sensory inputs and use them to solve a given
task from examples or by trial and error. In such regard, the achievements of deep learning
have been astounding — with state of the art models often being capable of surpassing
human ability in visual and audio-centric tasks, as well as in the solution of intricate
or exploration-heavy tabletop and video games, and able to drive complex dexterous
actuation of robots in rugged unfriendly environments.

Nonetheless, a large unfilled gap still remains between humans and deep learning mod-
els — even those that can claim indisputably better performance against their human
counterparts — w.r.t. how tasks are actually learnt and evaluated. Indeed, deep learning
systems are almost always purpose-built with a specific goal or task in mind — although
potentially broad — and trained or validated with data curated for such purpose. Should
requirements or tasks change, training would need to be repeated. On the other hand,
human beings usually learn many tasks at once, and many more along their lifetime —
without forgetting those previously mastered — and they do so from a stream of percepts
mostly composed of information not strictly relevant to each specific task, often without
direct supervision [23]. Even more strikingly, should a new task require to be learned or
objectives slightly change, humans are innately able to rapidly recover some structure
from previous experiences or knowledge, swiftly adapting to the unknown.

Attempts to close such gap, allowing trained machine learning models to integrate
new examples towards the adaptation to a new task do exist and broadly belong to
three categories: (1) transfer learning [19] approaches typically re-use early layers of a
neural network model trained on given tasks, while re-initialising and re-training (the)
last layer(s) on data pertaining to the new task(s); (2) fine-tuning [20–22] approaches
instead simply carry on the training of the model with data pertaining to the new
task(s), eventually after an adequate adjustments to the loss function or hyperparameters;
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(3) continual/lifelong learning [23, 182] techniques try to devise algorithms that allow
the learning of several tasks in a sequence, balancing the effect of adaptation to a new
task with retention of previously-learned ones. However, despite some success, all those
methods require a still significant amount of curated data, and none is able to actively
promote the same kind of structure consolidation and later reuse that makes active
learning so effective in humans. Frontier large language models may represent the closest
incarnation of such idea of in-context learning [183] — still being greatly reliant on sheer
pre-training efforts in terms of time and compute, and on fine-tuning for knowledge
update.

In this chapter, we develop a novel framework for supervised multi-task representation
learning that allows fast very-few-shot test-time adaptation to new unforeseen tasks that
bear some structural similarity to those seen during training. Our approach is based on a
nonlinear generalisation of Koopman operator learning [26–28] and is geared towards
modelling the input/output mapping associated with a given task as a specific discrete-
time dynamics of a dynamical system. Training occurs driven by a multi-objective
gradient-based optimisation scheme, whereas test-time adaptation only requires the
fitting in closed form of one affine operator per additional task.

Preliminary tests on challenging geometrically-grounded visual tasks with a clear analyt-
ical optimal representation and solution show promising results in terms of adaptation
accuracy, speed, and data efficiency. Future developments towards imitation learning in
more complex settings are finally outlined.

5.2 The framework
In this section we introduce our novel framework for supervised multi-task learning and
fast test-time adaptation to new tasks. Although originally geared towards next-state

prediction for discrete-time dynamical systems, its application to arbitrary setups with
generally weak assumptions would be easily achieved.

5.2.1 General setting
Let us consider a typical setting in supervised multi-task learning, where several different
tasks τi are required to be learned, from examples, by the same model. In particular, we
have access to training sets composed of inputs xij ∈ Rn and outputs x′

ij ∈ Rn such
that:

x′
ij = τi(xij); ∀i ∈ I, j ∈ Ji

with I, Ji appropriate sets of indices. In the specific case, I would identify indices
associated with the different tasks, whereasJi is associated with the plurality of examples
in the respective training set (thus the dependence on index i).

We remark here that the same vector space Rn can be assumed to contain both inputs
and outputs across tasks without loss of generality — as it is always possible, e.g., to pad
all vectors to the maximum size among them.
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5.2.2 Model structure
In such setting, we can formally consider each task τi : Rn → Rn as a different transition
operator acting on the state (xij) of the same discrete-time dynamical system — where
it simply induces a different dynamical evolution (to state x′

ij) — akin to the formalism
introduced in subsection 2.4.1 for a single task.

Thus, we propose to estimate x′
ij as

x′
ij ≈ x̂′

ij := βθβ(αθα(xij) + Tiφθφ(αθα(xij)))

where αθα : Rn → Rde , βθβ : Rde → Rn, and φθφ : Rde → Rdd , are task-independent
parametric sub-models (e.g. artificial neural networks) with learnable parameters θα, θβ ,
and θφ respectively. Ti ∈ Rdd×de are instead task-dependent affine operators. de, dd ∈ N
are treated as hyperparameters.

In such context, model αθα acts on system state as a (potentially nonlinear) embedding-
generating function, whereas βθβ represents the reciprocal de-embedding function. The
dynamics can then be described — within the embedding space — as

αθα(x
′
ij) = αθα(xij) + Tiφθφ(αθα(xij))

or, with a rearrangement of terms:

αθα(x
′
ij)− αθα(xij) = Tiφθφ(αθα(xij))

whose structure bears some strong similarity with vanilla Koopman operator learning.
Two crucial differences, nonetheless, are also present. In particular, they are described as
follows.

• The task-dependent affine operator (Ti) does not act directly on an embedding of
the state before the transition occurs (αθα(xij)), but on a further transformation
of it (φθφ).

• The result of the action of such operator is not the corresponding embedding for
system state after the transition (αθα(x

′
ij)), or a function thereof. It is instead the

difference of those embeddings across the transition (αθα(x
′
ij)− αθα(xij)).

In our intentions, such departure from the standard Koopman operator learning setup is
not arbitrary. Indeed, we want — at least in principle — to endow each specific term with
an equally specific role in modelling transitions/tasks and the corresponding states before
and after they occur (i.e., the corresponding inputs and outputs).

In particular, the role of αθα would be similar to that of the Koopman embedding operator
— in that it should be able to equip system states with a suitable metric, capable of
capturing a global geometrical structure of system states, independent of specific tasks,
over which (at least typically) all induced transitions are described with minimal error.
In such sense, with φθφ being the identity and an adequate choice of dimensions, the
method would not be much different or more expressive than vanilla Koopman. On
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the other hand, the effect of φθφ would indeed describe a nonlinear modulation of such
typical dynamics, capturing local state-dependent deviations from it. A more formal
justification for the need of such nonlinear modulation term is provided in section C.1,
where a crucial limitation of invertible linear latent dynamical evolution is uncovered in
a simple multi-task scenario.

5.2.3 Model training
Model training happens under the drive of loss minimisation by gradient-based methods,
as customary with most contemporary deep learning models. In principle, one could
simply fit all learnable parameters with an end-to-end reconstruction loss of the type
L :=

⟨︂
D(x̂′

ij;x
′
ij)
⟩︂
i,j

where D denotes any distance or divergence between estimated
and true target states, and ⟨·⟩i,j denotes the averaging over all available training examples.
However, in order to stay as close as possible to the original Koopman operator learning
theory — thus allowing to eventually benefit from more refined and advantageous derived
fitting procedures, such as that described by [28] — we decompose the end-to-end recon-
struction objective into two distinct sub-objectives, to be optimised in a multi-objective
fashion as the linear combination of the two. Specifically, we employ a loss of the type:

L := cemb Lemb + cdyn Ldyn

where

Lemb := 1/2
⟨︁
D(βθβ(αθα(xij)),xij)

⟩︁
ij
+ 1/2

⟨︁
D(βθβ(αθα(x

′
ij)),x

′
ij)
⟩︁
ij

and

Ldyn :=

⟨︄
∥αθα(x

′
ij)− αθα(xij)− Tiφθφ(αθα(xij))∥2

min
(︁
∥αθα(x

′
ij)− αθα(xij)∥2, ε

)︁ ⟩︄
ij

with ε > 0 in Ldyn being a numerical stability constant to avoid fraction blow-up.

Here, the role of the Lemb inversion loss is that of preventing representation collapse and
promoting the learning of an invertible embedding sub-model amenable to the description
of the many dynamical evolutions induced on the system state by the different tasks. On
the other hand, the Ldyn loss promotes the joint learning of each task-specific linear evol-
ution operator, together with the — still global — state-dependent nonlinear modulation
term. The norm-term at the denominator of Ldyn allows metric-aware minimisation in
the embedding space, while the additional freedom on multiplicative coefficients cemb
and cdyn enables a more controllable training.

Regularisation and generalisation-promoting interventions

As with more traditional machine learning models, also our framework might be sus-
ceptible to training-time overfitting, and as such it requires specific interventions to
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ensure proper model regularisation and foster generalisation. Such aspect is clearly not
specific to the multi-task setting, or to Koopman-like task modelling — on the other hand,
countermeasures to prevent such pitfalls should better be. We recommend three different
interventions in such case: one specifically designed to prevent the learning of brittle
embeddings by our model (or general Koopman-style operator learning), the other two
belonging to standard regularisation techniques. They are listed below.

Robust embedding inversion
Model training, as we outlined, does not directly rely on the end-to-end error on states
to update its parameters. However, in the case of next-state prediction, having such
error as close to zero as possible is all that matters to determine training success. To
foster the development of an adequately-structured, yet spaced-out, representation in
embedding space — and thus more robust to slight encoding and dynamics errors — Lemb
can be amended by introducing a deliberate but bounded random perturbation after state
encoding and before decoding. The resulting loss function would thus read as:

Lemb := 1/2
⟨︁
D(βθβ(αθα(xij) + δϵ),xij)

⟩︁
ij
+ 1/2

⟨︁
D(βθβ(αθα(x

′
ij) + δϵ

′),x′
ij)
⟩︁
ij

with δϵ, δϵ
′ ∼ N (0, ϵ). The value of ϵ should be treated as a hyperparameter. Additionally,

as a side-effect, such generalisation-enhancing technique further prevents the risk of
representation collapse.

Relaxed ϵ-insensitive embedding inversion
The appropriate tuning of coefficients cemb and cdyn controls the relative relevance of the
respective loss terms. However, this exerts little control over the respective gradient flows
and the local shape of the loss landscape. As such, it may happen that the resulting op-
timisation favours the minimisation of the cembLemb term nonetheless, even well beyond
a tolerable error. In turn, this may result in an overcommitment of model expressivity
towards increasingly diminishing returns, and ultimately hinder test-time adaptability.
Forcefully zeroing the loss when sufficiently close to zero may mitigate the issue. Tra-
ditionally, this could be done by further amending Lemb as L̃emb = max(Lemb − ϵins, 0)
[184]. A continuous relaxation of such function can also be used, such as:

L̃emb = Softplus(Lemb − ϵins)

where Softplus(z) := 1
b
ln(1 + ebz), with ln being the Natural Logarithm, e Euler’s

Number, and b a tunable smoothness parameters. Even though b could be treated as a
hyperparameter, its tuning is not particularly fruitful in this setting and the usual value
of b = 1 can be used. We explicitly remark here that, as provided by its formal descrip-
tion, such regularisation intervention is compatible with the generalisation-promoting
technique introduced earlier.

Rank constraint on Ti

Finally — especially in the case when operators are chosen to be particularly high-
dimensional — Tis could undesirably absorb part of the modelling role assigned in our
intentions to αθα and φθφ . This could lead to a sub-optimal structure being learnt by
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the latter, ultimately compromising test-time adaptation capabilities. In such sense, it
is possible to constrain the rank of Ti to a fixed value N ∋ r < min(dd, de). The most
straightforward way to achieve such goal is to decompose Ti according to the matrix
factorisation

Rdd×de ∋ Ti = T′
i T

′′
i

where T′
i ∈ Rdd×r and T′′

i ∈ Rr×de . Again, such intervention is in no way incompatible
with the two described above.

We also provide here some heuristic suggestions for the choice of dd and de, calling r
the rank of Tis (regardless of whether it is a result of rank constraints or not) and k the
total number of tasks (i.e. including both training-time tasks and the expectation of new
tasks for which adaptation is required at test-time). In particular — unless justified by
optimisation-related requirements — it is recommended not to exceed de ≤ dd ≤ k × r.

5.2.4 Test-time adaptation
The test-time scenario is almost identical to that of model training, with only two crucial
differences. I.e., the tasks for which examples are available are generally (but not strictly
required to be) different from those considered during training — and the numerosity of
such example pairs is strongly limited.

In such case, we propose to use the model obtained from the training phase, with learnable
parameters θα, θβ , and θφ kept frozen. For each new task for which adaptation is required
(i.e. that has to be learned at test-time), new matrices Ti are allocated, and fitted each,
separately and analytically, on the minimisation of mean square error loss in the
embedding space, i.e.

Li
adapt :=

⟨︁
∥αθα(x

′
ij)− αθα(xij)− Tiφθφ(αθα(xij))∥22

⟩︁
j

Since the only term left learnable is the affine operator Ti, the test-time adaptation
problem is reduced to the solution of system of linear equations. As far as the specific
fitting procedure is concerned, the framework does not impose any strict requirement.
For the rank-unconstrained setting, we suggest the use of Ridge-regularised least squares
(RRLS) regression [185], whereas for the rank-constrained scenario with the specific
factorisation described in section 5.2.3 a more advanced approach should be used in order
to preserve the structure of Ti. In detail, alternating least squares [186, 187] (ALS) with a
fixed number of iterations can be utilised for the fitting of each matrix factor (i.e. T′

i and
T′′

i ), eventually employing as initial guess the SVD decomposition of a rank-unconstrained
matrix fitted by RRLS on test data.

5.3 Preliminary experimental assessment
In this section we describe preliminary results from the testing of our framework, at
the moment limited to a specific setup with challenging geometrical properties of the
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inputs and outputs, yet simple and with clear analytical solutions for the structure of
αs and Tis able to capture typical behaviour. The goal of our tests is threefold: (1) to
ensure that our framework, as described in section 5.2, is able to learn — during training
— the adequate structure we know to be required to solve the tasks and allow for optimal
test-time generalisability; (2) to verify whether the test-time adapted model is able to
correctly perform next-state prediction on previously unknown tasks, within a reasonable
tolerance; (3) to investigate whether this remains true when local variations to typical
dynamics are added, or when states are made to contain features irrelevant to dynamical
evolution.

5.3.1 Setup
Our experimental setup is inspired by the idea of different tasks being moves performed on
a chessboard by a chess-like piece. Such arrangement is intuitively easy to deal with, given
the appropriate representation, as any chess-like move on the board can be optimally
described as a specific translation on a flat Cartesian 2D grid. Our intuition, however, is
so keen on this scenario also because it is probably not the first time we see a chessboard
with moving pieces on it; nor it is the first time we model simple transformations within
a system of coordinates. On the other hand, the success of a deep learning model — and
its ability to generalise to new tasks — will inevitably depend on whether it is able to
develop such intuition during its training alone, and use it appropriately when test-time
adaptation occurs.

In the following subsection, we will build and describe our setup more detailedly —
incrementally, adding one element of complexity at a time.

State representation

We begin by considering a finite square chessboard of size L× L such that exactly one
piece can be found on it at any time. The piece is able to move according to the same
rules as the King of chess.1 In order to generate examples, an initial square is picked
uniformly at random from the entire board, then a random move is sampled — still
uniformly at random — among all those which are allowed from that initial position.
Lastly, the initial/final position-pair is added to the example-set of a task corresponding
to the given move direction (thus producing datasets for 8 different tasks in total).

The system state for both input and output, however, is provided to the model in the
form of a flattened square 1-channel image, where all pixels bear the value of 0 (i.e. are
black-coloured) except for the pixel corresponding to the position of the piece, which
carries the (normalised) value of 1 (i.e. is white-coloured). The result is a vector of size
L2.

Such use of flattened images as states — instead of coordinates — makes the resulting
problem geometrically much more challenging. Indeed, all of such states are mutually
orthogonal in the standard basis and equidistant one another. Even though the described
dynamics is simple in the aforementioned Cartesian representation, the model needs
1

I.e. a move is allowed to any horizontally, vertically, or diagonally adjacent square — exactly once at a
time.
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to learn such representation (or, potentially, another equivalent to it) exclusively from
examples.

Atypical dynamics: border behaviour

Assuming the model is able to perfectly recover a Cartesian representation of the chess-
board, each of the 8 moves would be representable as a fixed translation vector, regardless
of the specific input/initial state to which it is applied. We refer to it as typical dynamical

evolution. To make such dynamics more challenging, we introduce some discontinuous
task-state interdependence.

Specifically — and differently from traditional chessboard games — we allow moves to
be performed also against board edges. In such case, we consider two different and
mutually-exclusive possibilities: in the sticky edges case, the piece moved against an edge
(regardless of the task or the specific edge) remains in its initial position; in the loopy

edges case, the move is performed in periodic boundary conditions — giving rise to a
toroidal topology.

Splitting focus

From talking in a noisy environment, to singing and playing an instrument at the same
time, the ability to direct or split focus according to circumstances is crucial to many activ-
ities. In order to capture such peculiar aspect within our simple setup, we further extend
our state representation. Specifically, we concatenate to our already-defined L2-scalars
long chessboard-state vector one further real-valued scalar fj ∈ [0, 1]. When generat-
ing each initial state, a value for fj is sampled uniformly from the {0, . . . , i/F , . . . , 1}
F -equipartition of the [0, 1] interval. Such scalar is preserved by dynamical evolution
and simply copied to the final state. Interestingly, since the different possible values for
fj are naturally ordered, and not bound to just {0, 1}, such change to system state breaks
the natural symmetry induced by equidistance and orthogonality among states — and it
does so in a completely uninformative fashion w.r.t. the underlying chessboard dynamics.

Partitioned observability

Finally, to complicate our task even further, we introduce some spurious correlation
between chessboard states and the values of fj . In particular, we consider — among
all possible initial chessboard-states and all possible values of fj — the most numerous
set of the two. Then, the values of such set are associated uniformly at random and
without repetition to the values of the other set. If e.g. L = 8 and F = 4, of all possible
64 chessboard states only approximately 16 fixed states would ever carry each of the 4
distinct fj values.

5.3.2 Results

We experimentally test our framework, described in section 5.2, in the setup just outlined.
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Multi-task instance

In particular, we consider a chessboard with L = 16, thus producing states composed
of 257 scalars — where fjs are to be chosen from 100 distinct equispaced values. Given
such disproportion between the numerosity of the two sets, we allow the cemb Lemb loss
term to be rewritten as:

cchess
emb Lchess

emb + cf
emb Lf

emb

in order to more carefully control the strength of each reconstruction term separately.

We choose 3 tasks as training tasks, whereas all the others are then fitted, each separately,
during test-time adaptation. Both the sticky and loopy edges variants are considered.
Specifically, we choose tasks ↑ (North),↙ (South-West) and↘ (South-East) as training
tasks — since they allow to cover all possible edges with the minimum number of tasks,
while being the most spread-out one another.

Model instance and hyperparameters

We define our model and associated hyperparameters by choosing αθα to be a learnable
affine transformation with output size de = 4, φθφ to be a 2-layers multi-later perceptron

with ReLU nonlinearity, output size dd = 5 and hidden size 10, and constrain Tis to have
rank 1 via matrix factorisation. βθβ is finally chosen to be a 2-layers MLP with ReLU
nonlinearity and hidden size 260.

We further choose distance D — instrumental in defining losses Lchess
emb and Lf

emb — to be
pixel-averaged cross-entropy. Mixing coefficients are set to be cdyn = 225, cchess

emb = 1 and
cf

emb = 1. Regularisation is ensured by setting ϵ = 0.25 and ϵins = 0.0085.

Training-time optimisation is carried out on shuffled batches of size 256, for 125 epochs,
by the RAdam [138] optimiser with a constant learning rate of 0.002. Test-time adapt-
ation is instead performed on 10 randomly-harvested examples per task, with a Ridge
regularisation weight of 10−7 and 75 ALS iterations. Remarkably, the specific number
of 10 examples is the minimum for which the resulting rank-constrained model is not
underdetermined on test data.

Results

After completion of the training process, the resulting model appears to have converged,
with training losses (averaged over the entire training-set) of Ldyn < 10−5, Lchess

emb < 10−3

and Lf
emb < 10−7.

Considering instead per-task end-to-end next-state prediction loss — i.e.

Le2e(i) :=
⟨︁
D(x̂ij

′,xij
′)
⟩︁
j

,

with D being pixel-averaged cross-entropy — still averaged over the training set, we
obtain Lchess

e2e(i) < 10−2 and Lf
e2e(i) < 10−6 independently of the specific task considered.

Moving on to test-time adaptation, we report in Table 5.1 end-to-end next-state prediction
losses, split by border-type scenario and portion of state (i.e. the chessboard or the
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additional scalar fj) being considered, computed on the test set. For each entry, we show
the average and associated 3σ Gaussian confidence intervals, across tasks and 5 distinct
re-samplings of the data being fit during the adaptation phase — the two sources of
variation producing effects of similar magnitude.

Table 5.1: Average test-set end-to-end next-state prediction losses, decoupled by state fragment

being predicted, in the sticky borders and loopy borders scenarios. Associated 3σ
Gaussian confidence intervals represent variability of both intra-task variation and

data re-sampling across 5 runs.

sticky loopy

Lchess
e2e(i) (avg.) 2.3± 0.7 1.0± 0.2

Lf
e2e(i) (avg.) (1.1± 0.7)× 10−5 (2.3± 0.9)× 10−5

Such results — although clearly partial, and preliminary in nature — are still significant to
validate our original intuition that drove the development of the framework we presented.
Indeed, not only the resulting system is able to successfully learn training tasks with very
low error in end-to-end next-state prediction — even in the presence of discontinuously
state-dependent non-tipicalities, confounding variables, or spurious correlations. Most
remarkably, it is also able to learn a representation structure that unlocks swift test-
time adaptation to new similar task, with minimal additional data and computational
expenditure.

To further validate that the learned representation is indeed what we expect it to be,
we finally plot the representation αθα(x) associated with each of the F × L2 = 25600
possible states x — as shown in Figure 5.1 after 4D→ 3D dimensionality reduction by
principal component analysis and colouring plotted points according to the value of fj
along the viridis palette [188].

Figure 5.1: Principal component analysis (4D→ 3D) of learned representation αθα(x) asso-

ciated with each possible system state x in the scenario considered — with sticky

(left) or loopy (right) borders. Colour-coding follows the value of fj along the viridis

palette.
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As it is possible to see — somehow also to our surprise — the resulting representations
closely match our intuitive understanding of the experimental setup: i.e. a planar 2D
Cartesian grid-like structure for the chessboard-state in the sticky setting, and a cylindrical
one in the loopy setting. In the sticky case, such description adequately (and only) captures
typical dynamics — leaving the handling of border behaviour to φs. In the loopy scenario,
instead, both typical dynamics and part of border dynamics can be jointly described on
the cylinder — accounting for the much lower and more concentrated reconstruction
error for the chessboard-states in such scenario.

Furthermore, in the sticky borders setting, the representation associated with states
carrying different values of fj form vertical structures where fjs are ordered in increasing
(or decreasing) order — mirroring the natural ordering induced by Euclidean distance
among states. Such phenomenon is not visibly present in the loopy setting, where —
apart from a higher reconstruction error for fis — the cylindrical representation already
fills the first 3 principal components. Appearing as compressed dots in the figure, groups
of chessboard-states with different fis will likely develop along the non-visible fourth
dimension of α. This concludes our assessment of the method.

For completeness, Figure 5.2 shows the evolution of the learned representations αθα(x)
as training progresses.

Figure 5.2: Evolution of learned representations αθα(x) along training, in the sticky borders

(top) and loopy borders (bottom) scenarios. Left-to-right: epoch 5, 35, 65, 95. Each

graphical representation follows the same conventions as Figure 5.1.

5.4 Conclusion
In this chapter, we introduced and preliminarily evaluated a novel framework that
allows effective supervised multi-task learning and subsequent very-few-shot test-time
adaptation with minimal additional data and compute. The method, based on a nonlinear
generalisation of Koopman operator learning, describes input/output pairs as states
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of a dynamical system subject to task-dependent dynamical evolution — and tries to
effectively decouple, in such light, a global geometrical grounding of typical dynamical
evolution from local, state-dependent deviations from it. On top of such structure, actual
differences across tasks are simply described by linear operators, which can easily be
fitted at test-time.

Our assessment, though still preliminary, corroborates the effectiveness of our framework
— being able to capture a structure close to ideal when dealing with problems that can
be easily described only in the adequate representation — and showcases its test-time
adaptation ability. The same continues to be true when the problem is made increasingly
more complex by the additions of deliberate confounders.

5.4.1 Future developments
When such framework was originally devised, however, we did not have only chessboards
and chess-pieces in mind. Instead, we were motivated by all those scenarios — still hard
for contemporary machine learning — where fast test-time adaptation is paramount,
and where effective solutions require a carefully-tuned interplay between structure and
learnability. As a motivating example, we can think about the reality gap in robot control
— where a robot, whose control policy has been learned via simulated physics, finally
faces the real world and needs to adapt to minor but crucial discrepancies, as fast as
possible. Or we can think of well-functioning vehicles or appliances, whose reliable
operation must be ensured even in the event of damage or part failure.

Groundwork in such sense is already underway. In particular, we are considering the
problem of next-state prediction for simulated systems whose dynamics is induced by a
previously-learned or expert-driven policy — and adaptation must occur w.r.t. slight but
insidious variations in system-wide physical constants.



Chapter 6

Emergent representations in networks
trained with the Forward-Forward
algorithm

6.1 Introduction
Deep Learning is a highly effective approach to artificial intelligence, with tremend-
ous implications for science, technology, culture, and society. At its core, there is the
Backpropagation (Backprop) algorithm [32], which efficiently computes the gradients
necessary to optimise the learnable parameters of an artificial neural network. Backprop,
however, lacks biological plausibility [33] – leading to many attempts to address the issue.
One of the most recent approaches, the Forward-Forward algorithm [34], eliminates the
need to store neural activities and propagate error derivatives along the network.
In a standard classification context, the application of Forward-Forward requires the des-
ignation of positive and negative data. For example, to classify images, one could assign
positive (or negative) data to those images having their correct (or incorrect, respectively)
class label embedded via one-hot encoding at the border (as shown in Figure 6.1, Panel
A). The Forward-Forward algorithm then learns to discriminate between positive and
negative data by optimising a goodness function (e.g., the ℓ2 norm of the activations), akin
to contrastive learning [35]. Satisfactory results have been observed [34] for classification
tasks on Mnist [189], a standard benchmark dataset. This work takes a step beyond
performance evaluation, delving into the structure of the hidden representations learned
by the Forward-Forward algorithm, uncovering their spontaneously sparse nature and
drawing parallels to neural ensembles observed in the brain [30, 31].

We organise this chapter as follows. In subsection 2.5.1 we set the stage by providing
a brief overview of the Forward-Forward algorithm and of neuronal ensembles. Then,
section 6.2 is dedicated to the description of the models and datasets investigated and
the methods used to analyse representations. Our analysis of the Forward-Forward
representations begins in section 6.3, where we present our key findings. Specifically,
in subsection 6.3.2, we show that the Forward-Forward algorithm spontaneously learns
sparse representations, organised into artificial ensembles, i.e. small sets of highly spe-
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cialised neurons that consistently co-activate for data in a given class. In subsection 6.3.3,
we demonstrate that these ensembles can overlap, with individual units contributing to
multiple ensembles when visual features are shared. Further, subsection 6.3.4 reveals
that ensembles can arise on previously unseen categories, indicating a robust general-
ization of this representational mechanism. Notably, these ensembles can share units
with those associated with seen categories, demonstrating effective integration of new
information with concepts learned during training. Finally, in subsection 6.3.5, we ex-
amine the structure of the weights and show that the observed sparsity and ensemble
formation arise from suppression mechanisms, analogous to the inhibitory processes
mediated by biological neurons [36]. These findings are particularly striking because
the Forward-Forward algorithm achieves these properties without requiring explicit
regularisation to induce sparsity. We observe that, although optimising the cross-entropy
loss for the same classification task does not appear to produce the sparse ensembles
we observe, the phenomenon may not solely be due to the use of the Forward-Forward
algorithm. In fact, similar results are obtained by optimising the same goodness function
of Forward-Forward, with Backprop instead. This suggests that more focus should be
put on the purpose and biological meaning of the loss function rather than the training
algorithm [37]. We discuss our results in section 6.4.

In summary, our main results are as follows:

• The Forward-Forward algorithm yields sparse representations composed of small
groups of highly specific units, which we refer to as ensembles by analogy with
those observed in the cortex.

• Ensembles can emerge in a zero-shot manner for classes held out during training
and they can share units across visually related categories.

• The emergence of sparsity and the formation of ensembles are not unique to Forward-
Forward optimisation, as they can also be observed in networks trained with Back-
propagation on the same objective function.

6.2 Methods
In this chapter, we investigate and compare the representations produced by three
models: 1

• A classifier in the style of that used by Hinton [34], trained with Forward-Forward
(FF);

• A classifier identical to the above, but trained end-to-end with Backprop to optimise
the same goodness function (BP/FF);

• A classifier trained with Backprop on the categorical cross-entropy loss, as customary
(BP).

Such different scenarios are described individually in subsection 6.2.2, subsection 6.2.3
and subsection 6.2.4, respectively.
1 From this point on, we use the term model to refer to the combination of network architecture and

optimisation algorithm.
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Figure 6.1: Activation patterns in a Multi-Layer Perceptron trained with the Forward-Forward

algorithm, on the Mnist dataset.

Panel A Examples of activation patterns in response to a positive input (class label

embedded as a one-hot encoding on the top left corner of the image). Images show

the activation value for network units, arranged as a matrix only for the sake of

clarity; darker squares represent more active neurons.

Panel B Activation value of each neuron in the first hidden layer (Layer 1), averaged

on all images of a given class. Neuron index on the x axis; average activation on

the y axis. Blue dots indicate units that are considered active according to the

leave-one-out (LOO) method described in subsection 6.2.5.

Panel C Activation map for neurons in Layer 1 for all images, grouped by class. A

blue dot in position (x, y) indicates that neuron x is activated by input y; colour

scale represents the intensity of such activation. Horizontal bands mark different

categories; blue vertical stripes mark active, category-specific neurons. Each input

category activates consistently a specific sets of neurons (ensemble).
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6.2.1 Data

The datasets we use to train and test the models described so far are Mnist [189],
FashionMnist [190], Svhn [191] and Cifar-10 [192]. Details on these datasets are
provided in the section D.1.

6.2.2 Model trained with Forward-Forward (FF)

Our FF model is inspired by the architecture proposed by Hinton [34] – and likewise
trained according to the Forward-Forward algorithm. It consists of three fully-connected
layers, each composed by 1000 units in the case of Mnist and FashionMnist, and 3072
units in the case of Svhn and Cifar-10. Each linear layer is followed by elementwise
ReLU non-linearities. Both during training and inference, the layer-wise ℓ2 norm is
used as the goodness function of choice; correspondingly, ℓ2 normalisation is performed
between subsequent layers. Additional results obtained using the ℓ1 norm as a goodness
function are presented in section D.10.
To define positive and negative data, a one-hot-encoded class vector is embedded at the
top-left corner of images. Prior to such embedding, these pixels are set to black colour.
Then, in the case of positive data, the pixel corresponding to the true class is switched
to the maximum value elsewhere observed in the image, while in the case of negative
examples such value is randomly assigned to one of the other pixels of the embedding
vector.
During training, the weights are optimised by minimising the loss function L = log(1 +
eGneg−Gpos), where Gneg and Gpos are, respectively, the goodness value for negative and
positive data. At inference time, for each layer, the goodness values corresponding to
every possible label are converted into a probability using softmax. By performing this
step for each layer, they can contribute equally to the prediction.

For comprehensive details on the training procedures of the models discussed in this
section and the next two sections, we direct the reader to section D.2.

6.2.3 Model trained with Backpropagation on the goodness object-
ive (BP/FF)

The architecture of the FF model, while designed to be optimised using the Forward-
Forward algorithm, can be trained seamlessly with Backprop on the same goodness
maximisation/minimisation objective. Indeed, keeping the definition of positive and
negative data introduced for FF, one could simply use Backprop to optimise the goodness-
based loss from the Forward-Forward algorithm.
In detail, positive and negative data are fed to the network during the forward step, and
the overall goodness of the internal representation is evaluated. The backward pass is
then executed, and parameters are optimised to achieve the same goal as the FF model.
It is worth pointing out that, in this case, the goodness is maximised globally instead of
layer-by-layer (i.e., locally).
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6.2.4 Model trained with Backpropagation on the cross-entropy
loss (BP)

The FF and BP/FF models are also compared to a standard neural classifier, serving as
a baseline. For such purpose, a multi-layer perceptron is employed. The model shares
the same number of layers, layerwise neuron count, and non-linear activation function
choice with FF and BP/FF. The only architectural difference between the BP model and
the other two is the addition of a final softmax layer, to suitably shape and scale the
output for the classification task. The model is trained end-to-end with Backprop on the
categorical cross-entropy loss.

6.2.5 Analysis of representations
For each model described, we analyse the internal representation emerging at each layer.
We limit our analysis to data belonging to the test set (i.e. not seen during training) and
correctly classified by the respective model. However, the main results of our analysis,
concerning sparse and ensemble-like representations, extend without any modification to
training data. Concretely, the representation of a single image is a n-dimensional vector
composed by the activations (after the ReLU non-linearity) of all the units in the layer.
For each layer, we extract a representation matrix X of size (M,n), where M is the total
number of test images (correctly classified) and n is the number of neurons in the layer
considered.

Sparsity

For each representation vector x we assign a sparsity measure following the notion of
sparsity introduced in Hoyer [193]:

S(x) =

√
n− ∥x∥1

∥x∥2√
n− 1

With this definition, when S(x) = 1 the vector x contains only one non-zero component
representing the case of an extreme sparsity. The other limiting case is the one in
which all the components of x are equal in magnitude, in this case S(x) = 0. The
sparsity function S interpolates smoothly between these two extremes. The sparsity of
a layer representation is obtained by averaging the sparsity of its component vectors
S = 1

M

∑︁M
i=1 S(xi).

Ensembles

To detect the emergence of category-specific ensembles, within each model and dataset
combination, we adopt the following method. The idea is that a neuron should be con-
sidered active and part of an ensemble if it activates consistently and specifically when
the network receives input data that belongs to that category.
We start by defining a category-specific representation matrixXc, of shape (Mc, n), where
Mc is the number of correctly classified test images of the given category. Then, we com-
pute the average activation of each hidden unit across all samples: xj,c =

1
Mc

∑︁Mc

i=1(Xc)ij ;
and the leave-one-out average of the averages LOOj,c =

1
n−1

∑︁
i̸=j xj,c. We then classify
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a neuron i as active (i.e. part of an ensemble) if xi,c > 2 · LOOi,c. We also perform a
significance test for these comparisons through a permutation test (see section D.3 and
Table 6.3). Examples of average activation profiles and of ensembles are reported in
Figure 6.1.

The output of the ensemble computation is a set of active units for each category: Ec ={︁
ec1, e

c
2, . . . e

c
nc

}︁
, ∀c ∈ {1, 2, . . . , C}, where nc is the number of active units for category

c. Once the ensembles are defined, it is possible to look at units that are shared across
categories c and c′ by considering Ec ∩ Ec′ . The size of the shared units is naturally
measured by | Ec ∩ Ec′ |.
We can also measure the similarity between two ensembles using the Jaccard similarity
index (intersection over union): J(Ec, Ec′) = |Ec∩Ec′ |

|Ec∪Ec′ | . As an example, for two ensembles
composed of 50 units with a substantial ensemble overlap of 30% (15 units), the similarity
J is ≈ 0.18. Examples of shared units are reported in Figure 6.3 (see Table 6.3 for typical
ensemble sizes in our setting).

When the sparsity S of a representation is low, ensembles are typically ill-defined as too
many neurons are significantly active simultaneously and the notion of active unit tends
to blur. To set a threshold, we will consider values of S below 0.5 as non-sparse, and in
these cases, we do not define ensembles out of the representation.

6.3 Results
In this section, we describe our findings for the three models introduced, on the Mnist,
FashionMnist, Svhn and Cifar-10 datasets. In particular, we focus on the properties of
representations obtained within the FF model, i.e. a model trained with Forward-Forward
on its natural goodness objective. Such properties, such as the emergence of category-
specific ensembles and the presence of shared units across them, establish a link between
neural networks trained with the Forward-Forward algorithm and biological cortical
networks described in section 2.5.1.

6.3.1 Classification accuracy
Before we present the main results of our work, we evaluate the performances of our
models on the classification tasks at hand. Table 6.1 contains results in terms of test set
classification accuracy for all models we employed – FF, BP/FF and BP – on Mnist,
FashionMnist, Svhn and Cifar-10. While some of these accuracy values are far from the
state-of-the-art (i.e., respectively, 0.997 [194], 0.931 [190], 0.860 [195] and approximately
0.7 [196], for fully-connected networks), they are a solid ground on which to build
our subsequent investigations. Training details and hyperparameters for all models are
reported in section D.2.

6.3.2 Forward-Forward elicits sparse neuronal ensembles
The FF and BP/FF models – based on the original Forward-Forward network architecture,
and trained according to the goodness objective (subsection 6.2.2 and subsection 6.2.3) –
exhibit typically high sparsity levels in their representations, in clear contrast with BP
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Table 6.1: Test-set classification accuracy for the models considered in our investigation. Results

expressed as mean ± std. dev. over 10 runs with independent randomised weight

initialisation.

Dataset FF BP/FF BP

Mnist 0.94± 0.008 0.969± 0.001 0.982± 0.001
FashionMnist 0.849± 0.002 0.877± 0.002 0.892± 0.004

Svhn 0.716± 0.002 0.799± 0.004 0.793± 0.145
Cifar-10 0.484± 0.004 0.521± 0.006 0.564± 0.004

Figure 6.2: Sparsity of category-specific representations. We report the sparsity of representa-

tions - computed as described in subsection 6.2.5 - for the three models FF, BP/FF
and BP on the Mnist dataset. Sparsity values are the average over 10 runs.

(see Figure 6.2 and Table 6.2). While sparsity does not spontaneously arise in BP, it can
be enforced by means of ℓ1 regularisation of the activations [197]. An analysis of this
setting is presented in section D.8.

Table 6.2: Average sparsity for all combinations of model, dataset and layer, according to

the definition given in subsection 6.2.5. Results are expressed as mean ± std. dev.

computed over 10 runs with independent random weights initialisation.

Model Layer Mnist FashionMnist Svhn Cifar-10
1 0.922± 0.001 0.85± 0.002 0.83± 0.001 0.77± 0.001

FF 2 0.813± 0.019 0.605± 0.015 0.706± 0.001 0.728± 0.002
3 0.618± 0.074 0.628± 0.013 0.489± 0.004 0.566± 0.002

1 0.895± 0.005 0.81± 0.007 0.783± 0.003 0.753± 0.004
BP/FF 2 0.747± 0.013 0.851± 0.007 0.95± 0.003 0.932± 0.003

3 0.131± 0.011 0.065± 0.009 0.133± 0.011 0.135± 0.009

1 0.315± 0.003 0.352± 0.003 0.47± 0.02 0.478± 0.016
BP 2 0.193± 0.004 0.241± 0.005 0.524± 0.212 0.3± 0.18

3 0.225± 0.006 0.248± 0.006 0.232± 0.106 0.164± 0.006

When the sparsity level is sufficiently high (S > 0.5) we are able to identify small sets
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of neurons (ensembles) that consistently co-activate across all the samples of the same
class, similar to what has been observed in cortical representations [30, 36, 95].

Figure 6.1 (Panels B, C) shows an example of average neuron activations for each class
in Layer 1 of the FF model trained on Mnist, and showcases the emergence of sparse,
category-specific, ensembles (see the section D.4 for a similar visualisation for Layers 2 and
3 of the same model and section D.5 for Layer 1 in all the models). These representations
typically activate only a small fraction of units: ensembles consisting of just a few percent
of the neurons in a layer are commonly observed, whether working with simpler datasets
(e.g., Mnist, FashionMnist) or more complex ones (Svhn, Cifar-10), with a slight
tendency of the FF model to create larger ensembles in the latter case (Table 6.3).

Table 6.3: Average fraction of units taking part in ensembles, for all combinations of dataset

and layers, in the FF and BP/FF models. Ensemble sizes are averaged across all

categories, divided by the number of neurons in a layer, and then expressed in %.

Ensembles are defined according to the LOO method presented in subsection 6.2.5.

Results expressed as mean ± std. dev. . In the third layer of BP/FF, as well as in BP,

the representation is non-sparse. With (*) we marked the condition in which ≈ 2.6%
of the units have a p-value larger than 0.05, see section D.3 for details.

Model Layer Mnist FashionMnist Svhn Cifar-10
1 3.69± 0.09 5.02± 0.14 10.3± 0.15 16.08± 0.09

FF 2 5.31± 0.35 18.46± 0.66 21.28± 0.23 21.2± 0.3
3 1.36± 0.36 20.59± 0.63 4.48± 0.52 4.86± 0.51

1 8.58± 0.23 13.24± 0.31 15.07± 0.16 13.3± 0.13
BP/FF 2 13.18± 0.67 8.45± 0.47 5.08± 0.19 5.55± 0.28(∗)

3 - - - -

Overall, these findings show that networks trained with the Forward-Forward objective
produce highly sparse representations, characterised by ensembles, i.e. small groups of
neurons with category-specific activation patterns.

6.3.3 Visually similar classes can elicit ensembles with shared
neurons

Drawing a parallel with a phenomenon observed in Neuroscience [103], related categories
can be expected to share units of their ensembles. This is indeed what we observe, as
shown in Figure 6.3. Results are reported for FashionMnist, where different classes of
clothes or shoes may contain a common share of visual features. In this regard, we observe
a clear tendency to share units between similar classes – e.g. across representations of
pullover, coat and shirt.

In the following section, we provide evidence that a unit can be shared across two
ensembles even if one of these refers to an unseen category (i.e., excluded from the
training set but whose representation, extracted at test time, generates an ensemble), as
we show in Figure 6.4 (Panel C).
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Figure 6.3: Visually similar classes in FashionMnist can elicit ensembles with shared neurons.

Panel A The ensembles elicited in the first hidden layer of FF by two example inputs.

Red circles indicate the active units which are shared between the two categories.

Panel B Element i, j of the matrix indicates how many units are shared between

the ensembles of category i and category j (normalised by the ensemble sizes), by

using the Jaccard similarity index: J(E i, Ej) = |Ei∩Ej |
|Ei∪Ej | . The results are referred to

a single training run.

These findings indicate that ensembles relative to visually related classes can partially
overlap.

6.3.4 Representations of unseen categories can elicit well-defined
ensembles

We investigate the ability of a trained FF model to respond to unseen categories with a
coherent activation pattern which is typical of the ensembles we found on the categories
seen at training time. To this end, we repeatedly train FF on FashionMnist, removing
one category at a time. Then, we extract the representation of the missing category,
and verify if an ensemble is formed. We find that in all the ten cases, this is indeed the
case, and the new ensemble share the same characteristics of the ones emerging for seen
categories, apparently with the only exception of a lower average activation of their
constituent units (see Figure 6.4 for one example, and the section D.6 for a more detailed
account).

In several cases, we also find that the ensembles of unseen categories share units with
the ensembles of seen categories, when endowed with similar visual features (Figure 6.4,
Panel C). A more extensive exploration of these cases is also reported in the section D.6.

These results show that ensemble-like structures can arise in a zero-shot setting on data
categories held out of the training set.
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Figure 6.4: The representations of an unseen category form an ensemble in FF trained on

FashionMnist.

Panel A Activation patterns in response to the different categories in the first hidden

layer. The unseen category (Sandal), surrounded by red lines, produces a relatively

weaker but well-defined ensemble-like activation pattern.

Panel B Activation value of each neuron, averaged on all images of the unseen

category. Neuron index on the x axis; average activation on the y axis. Blue

dots indicate units that are considered active according to the method described in

subsection 6.2.5.

Panel C Ensembles of unseen categories can share units with the ensembles of the

other categories. Element i, j of the matrix indicates how many units are shared

between the ensembles of category i and category j: | E i ∩ Ej |. The results are

referred to a single training run.

6.3.5 Distribution of excitatory and inhibitory connections
As we observed in subsection 6.3.2, FF and BP/FF have comparable sparsity levels and,
when they are defined, the ensembles have comparable sizes. A more fine-grained
inspection of the representations learned by different models at different layers can be
found in section D.9. The presence of sparse ensembles suggests that a strong inhibition
mechanism is at work, leaving only a few neurons active for each data sample. Inhibition
in these architectures is the result of an interplay between the sign and magnitude of the
weights and the those of the biases. Therefore it is natural to wonder whether FF and
BP/FF are similar also in this interplay between weights and biases. We find that the
answer is no: the FF and BP/FF are indeed two profoundly different models that create
sparse representations and ensembles with different mechanisms.

To show this, we consider for each neuron i in a layer with width n the fraction of its
positive weights w.r.t. the total number of its input connections (ϱ+i in the following),
and its bias βi. From these neuron-level quantities we construct their layer averages:
ϱ+ = 1

n

∑︁
i ϱ

+
i and β = 1

n

∑︁
i βi. The neuron’s weights are strongly imbalanced towards

inhibition when ϱ+i ≈ 0 and, viceversa, strongly imbalanced towards excitation when
ϱ+i ≈ 1; when ϱ+i ≈ 0.5 we will say that the neuron’s weights are almost perfectly
balanced; similar considerations hold for the biases, where a large and negative βi means
strong inhibition for the i-th unit.

Focusing on the second hidden layer, we observe macroscopic differences in the empirical
distribution of ϱ+i among the three models (see Figure 6.5), with 1) a dominance of positive
weights in the case of FF, 2) a bimodal distribution of ϱ+i in BP/FF, with two populations
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of imbalanced units in opposite directions, and 3) a unimodal and approximately balanced
distribution for all the neurons in the BP model.

In FF, we find that the bias distribution is strongly imbalanced towards inhibition with
a mean ± std.dev. value of −1.66± 1.534. On the contrary, BP/FF and and BP show a
substantial balance (−0.017±0.015 and 0.003±0.018, respectively). Therefore, although
the weights of the FF model appear imbalanced towards excitation, the average bias
β is very large and negative, and this might explain why, for this model, we observe
such high sparsity values. Conversely, the BP/FF model has substantially zero bias
(within very small fluctuations), therefore the inhibitory mechanism at work here does
not rely upon a negative bias, but on the weights’ configuration. From these results, we
conclude that not only the training objective (i.e. goodness-based vs. categorical cross-
entropy minimisation), but the specific training protocols (FF vs BP/FF) are determinant
in shaping a different interplay between excitation and inhibition, even when similar
sparsity levels are observed.

Figure 6.5: Distribution of ϱ+i in Layer 2 (Mnist dataset). In FF, the distribution is imbalanced,

with most of the population of neurons having≈ 65−75% of excitatory weights. In

BP/FF the distribution is bimodal with two populations of neurons: one inmbalanced

towards excitation (right mode) and the other towards inhibition (left mode). The

BP model is almost perfectly balanced between excitation and inhibition.

We report the summary statistics ϱ+, β for all the combinations of models, layers and
datasets in Table 6.4 and Table 6.5. In all settings, we observe a similar picture, with
the inhibition mechanisms dominated by negative biases in FF and negative weights in
BP/FF.

In summary, these findings illustrate that although FF and BP/FF learn similar repres-
entations, they achieve sparsity by relying on fundamentally different neuron inhibition
strategies.
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Table 6.4: Average fraction of positive weights (ϱ+) for each combination of models, datasets

and layers. Results are expressed as mean ± std. dev. over a single training run.

Dataset Layer FF BP/FF BP

1 0.661± 0.031 0.534± 0.028 0.486± 0.022
Mnist 2 0.688± 0.014 0.445± 0.099 0.523± 0.019

3 0.882± 0.078 0.535± 0.071 0.52± 0.021

1 0.457± 0.099 0.509± 0.018 0.491± 0.021
FashionMnist 2 0.602± 0.074 0.423± 0.065 0.52± 0.02

3 0.416± 0.191 0.433± 0.019 0.52± 0.02

1 0.487± 0.062 0.499± 0.009 0.499± 0.006
Svhn 2 0.521± 0.033 0.427± 0.042 0.504± 0.011

3 0.583± 0.096 0.422± 0.031 0.522± 0.023

1 0.493± 0.027 0.502± 0.011 0.501± 0.009
Cifar-10 2 0.489± 0.044 0.43± 0.038 0.513± 0.012

3 0.612± 0.046 0.408± 0.034 0.523± 0.02

6.4 Discussion and conclusions
In many brain circuits, only a small fraction of neurons is active under specific sensory
or behavioural conditions. It well established, indeed, that both sensory cortex and the
hippocampus exhibit markedly sparse activity. The exact percentages can vary with
species, types of stimuli, brain state, measurement technique, and brain area. For example,
in rodent primary visual cortex, only about 10 − 20% of excitatory neurons respond
significantly to visual stimuli of varied complexity, from simple ones, such as oriented
gratings to complex ones, like movies [30, 198]. In the auditory cortex, the fraction of
neurons activated by a particular sound can be as low as 5 − 15% [199, 200]. Lastly,
hippocampal recordings during animal exploration show that only 20− 40% of neurons
become active in different environments [201]. This sparse activity is often organised into
ensembles, small groups of neurons that consistently co-activate in response to sensory
stimuli or during spontaneous activity, and they have been proposed as functional building
blocks of sensory processing, memory, and behaviour [30, 31, 94–99]. We discussed the
notion of ensemble in section 2.5.1.

The main finding of our work is that artificial neural networks trained with the Forward-
Forward algorithm can elicit sparse representations that share intriguing analogies with
the neuronal ensembles found in real brains. We started our investigation by collecting
and analysing representations from FF networks trained on Mnist, FashionMnist,
Svhn, and Cifar-10 and defined, separately for each category, subsets of units (artificial
ensembles) that prominently and consistently activated in response to data in such
category (subsection 6.3.2). These category-specific ensembles turn out to be composed
of a few active units, which is consistent with the aforementioned experimental findings
on the sensory cortex and the hippocampus. Furthermore, when image categories are
characterised by a certain degree of visual similarity, the corresponding ensembles often
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Table 6.5: Average bias (β) for each combination of models, datasets and layers. Results ex-

pressed as mean ± std. dev. over a single training run.

Dataset Layer FF BP/FF BP

1 −1.57± 2.029 −0.007± 0.019 0.001± 0.021
Mnist 2 −1.66± 1.534 −0.017± 0.015 0.003± 0.018

3 −0.313± 0.151 −0.071± 0.02 0.002± 0.018

1 −0.694± 0.706 −0.007± 0.018 0.003± 0.021
FashionMnist 2 −1.858± 0.489 −0.011± 0.018 0.003± 0.019

3 −1.437± 1.213 −0.028± 0.009 0.003± 0.019

1 −0.662± 0.219 −0.033± 0.012 −0.004± 0.013
Svhn 2 −0.959± 0.089 −0.005± 0.011 0.003± 0.012

3 −0.962± 0.271 −0.001± 0.016 0.003± 0.011

1 −0.402± 0.1 −0.022± 0.008 −0.001± 0.016
Cifar-10 2 −0.703± 0.132 −0.006± 0.01 0.003± 0.016

3 −0.873± 0.076 −0.004± 0.013 0.002± 0.013

share one or more units (Figure 6.3, Panel B). The fact that single units can appear in
multiple ensembles for different categories parallels the idea of mixed selectivity neurons.
Mixed selectivity refers to neurons that respond in complex ways to combinations of
characteristics or stimuli, thus increasing the dimensionality of population activity and
allowing for flexible behaviour [101, 102]. Neurons that participate in more than one
ensemble can be conceptually viewed as exhibiting mixed selectivity, since they contribute
to multiple learned representations simultaneously.

We then tested the ability of trained FF models to cope with new data, and observed that
activations in response to an unseen input category form, in many cases, a new ensemble
with sparsity characteristics similar to those formed for other classes during training
(Figure 6.4, Panels A and B). We also noticed that the ensembles of unseen categories
often show a high level of similarity and integration with the ensembles of the categories
of data encountered during training, realised through the sharing of units (see Figure 6.4,
Panel C and also the results in section D.6). Beyond this qualitative similarity with the
ensembles formed in response to seen categories, we showed, by training linear probes
on representations, that the information content in these activation patterns is almost as
high as that of seen categories Table D.2. While the BP model typically achieves higher
decoding performance in this task, it does so by relying on a dense coding scheme. These
findings suggest that the ensembles generated by FF in response to new data can support
zero-shot classification tasks, which is particularly relevant in view of the importance of
zero/few-shot learning in human and animal cognitive performance [202].

While absent in the BP model, the existence of ensembles composed of a few units is not
unique to FF. It was indeed observed also in BP/FF (subsection 6.3.2), where the ensembles
turned out to be of comparable size. This similarity in how representations are organised
in FF and BP/FF is also backed by quantitative analysis with established representation
similarity metrics section D.9. However, despite their similarity at representation level,
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the FF and BP/FF models are profoundly diverse, as demonstrated by the different
interplay between inhibition and excitation in these models (see subsection 6.3.5). We
observed in this regard that the excitatory/inhibitory (E/I) balance play a key role in the
stability of cortical networks and in brain dynamics [203, 204].

The sparsity of representations has computational benefits in sensory processing.
Olshausen and Field [111] emphasised that sparsity may be the optimal encoding strategy
for neural networks because it is energy efficient. This is especially important for biolo-
gical neural networks, which operate under metabolic constraints. Sparsity also increases
the memory-storage capacity and eases readout at subsequent processing layers. Babadi
and Sompolinsky [205] showed that sparse and expansive coding (i.e. from a lower di-
mensional sensory input space to a higher dimensional neural representation) reduced
the intra-stimulus variability, maximised the inter-stimulus variability, and allowed op-
timal and efficient readout of downstream neurons. This is the reason why sparse and
expansive transformations are widespread in biology, e.g., in rodents [206] or flies [207].

Limitations

The limitations of the present work could be addressed by applying similar analyses to
more complex datasets and a variety of tasks. To scale to a more challenging dataset may
require the replacement of a fully connected network with more suitable architectures
trainable with the Forward-Forward protocol, e.g. the CNNs recently introduced in Papa-
christodoulou et al. [91] and Sun et al. [92]. This approach could provide insights into how
data characteristics influence sparsity levels and the resulting ensemble-like structures.
Moreover, as highlighted in Yang [90], the choice of hyperparameters potentially affects
representation sparsity, as well as the goodness function of choice.

Future work

Many questions are left open and will be addressed in future works. A closer inspection of
the activation patterns within each category will be necessary to test for the co-existence
of multiple patterns, with one dominant and possibly many subdominant patterns. We
have not yet investigated this microstructure [208], leaving it to possible extensions of this
work. Based on experimental results indicating the presence of small category-specific
ensembles, a promising avenue for future research in this field encompasses exploring
model compression through pruning [209], with the design of new strategies based
on the relevance of the ensembles, as well as investigating the dynamic evolution of
ensemble size and organisation throughout the training process. An especially intriguing
perspective, inspired by recent work on optimal sparsity in hippocampal memory models
[210], suggests that sparsity levels are dynamic variables, rather than fixed properties of
the network, that can be tuned to the compressibility of sensory inputs to reach optimal
performance. Such inquiries hold the potential to shed light on the formation, evolution,
interactions, and persistence or replacement of ensembles in artificial neural networks.
Lastly, from the analysis of representations learned by the Forward-Forward algorithm,
our work suggests novel directions for comparing artificial and biological representations
[211, 212] – particularly for biologically plausible learning algorithms – by leveraging a
well-established concept in Neuroscience: that of neuronal ensembles.
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Conclusion

Modern-day artificial intelligence — built upon machine learning and neural networks
research — has already managed to carve and establish its place in contemporary society.
Countless institutions, businesses, and individuals alike already use it daily in activities
once thought an essential prerogative of human beings. Mutually propelling and being
propelled by such societal change, also the development of AI itself has changed pace —
with new model architectures, applications, and AI-enabled products being developed
daily — and the need for new data, compute, and energy towards this purpose is ever
increasing.

Along such successful upward spiral, however, some gaps between artificial and human
intelligence remained wide or even increased — in particular those aspects where cognitive
structure, resilience, and adaptability are in interplay. This warrants the need for further
research on the matter. In this thesis, still far from closing such gaps, we analysed some
of those peculiar and intriguing phenomena — offering at the same time some effective
and actionable mitigations.

We first investigated the problem of adversarial robustness — which makes deep learning
models brittle and potentially untrustworthy — and developed Carso, a state of the art

adversarial defence. Such method blends techniques from adversarial training, adversarial
purification, and model ensembling by making the role of the internal representation of
the attacked classifier more central.

Then, we showed that the same kind of methods used to train neural network models can
lead to artificial physical systems that are more adaptable to unforeseen operative circum-
stances. In particular, by minimally modifying a photovoltaic system harvesting energy
from incident radiation — with the addition of learnable components — its efficiency can
be made almost optimal regardless of radiation frequency.

Furthermore, we developed a mathematical framework for multi-task supervised repres-
entation learning that allows the fast and generalisable adaptation to new unforeseen
tasks at test-time. The method, based upon a nonlinear generalisation of Koopman oper-
ator learning and originally devised in the context of dynamical systems, is still under
development — but holds potential to be used for very-few-shot imitation learning and
may ameliorate the reality gap in the field of robotic simulation and control.
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Finally, we analysed the internal representations that emerge in neural networks trained
by the Forward-Forward algorithm, finding out that such biologically-plausible learning
algorithm — similar to contrastive learning — makes them sparse and endowed with
ensemble-like properties reminiscent of the sensory cortex. However, we also discovered
that the specific choice of goodness function — the FF equivalent of the loss function in
traditional deep learning models — plays an equally relevant role in such sense.

Coda

At this point, one may ask what is the purpose of all this. The ultimate goal, the reason
why we took the first step of our journey. If we are allowed a shot of optimism — and
think of transformative innovations AI has allowed so far — we can only imagine what a
more flexible, adaptable, and intuitive AI would produce. Still firmly governed by humans,
but equipped of some of the traits that make human intelligence so unique.

An unusual linguistic perspective may help shed even more light on the matter. Several
expressions in vernacular English associate tools — as fixed-purpose implements — to a
lack of cognitive prowess or thought independence. Among those, the term tool in itself,
which — when referred directly to a person — carries a derogatory meaning. Under such
light, we want to make AI a tool, which is also not a tool. That would be the ultimate
purpose. ■
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Appendix A

Supplementary Material for Chapter 3

A.1 Justification of Adversarially-balanced batches
During the incipient phases of experimentation, preliminary tests were performed with
the MNIST [89] and Fashion-MNIST [190] datasets – using a conditional VAE as the
purifier, and small FCNs or convolutional ANN s as the classifiers. Adversarial examples
were generated against the adversarially pre-trained classifier, and tentatively denoised
by the purifier with one sample only. The resulting recovered inputs were classified by
the classifier and the overall accuracy was recorded.

Importantly, such tests were not meant to assess the end-to-end adversarial robustness of
the whole architecture, but only to tune the training protocol of the purifier.

Generating adversarial training examples by means of Pgd is considered the gold standard

[51] and was first attempted as a natural choice to train the purifier. However, in this
case, the following phenomena were observed:

• Unsatisfactory clean accuracy was reached upon convergence, speculatively a con-
sequence of the VAE having never been trained on clean-to-clean example recon-
struction;

• Persistent vulnerability to same norm-bound Fgsm perturbations was noticed;

• Persistent vulnerability to smaller norm-bound Fgsm and Pgd perturbations was
noticed.

In an attempt to mitigate such issues, the composition of adversarial examples was
adjusted to specifically counteract each of the issues uncovered. The adoption of any
smaller subset of attack types or strength, compared to that described in subsection 3.2.4,
resulted in unsatisfactory mitigation.

At that point, another problem emerged: if such an adversarial training protocol was
carried out in homogeneous batches, each containing the same type and strength of
attack (or none at all), the resulting robust accuracy was still partially compromised due
to the homogeneous ordering of attack types and strengths across batches.
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Such observations lead to the final formulation of the training protocol, detailed in
subsection 3.2.4, which mitigates to the best the issues described so far.

A.2 Architectural details and hyperparameters
In the following section, we provide more precise details about the architectures (subsec-
tion A.2.1) and hyperparameters (subsection A.2.2) used in the experimental phase of our
work.

A.2.1 Architectures
In the following subsection, we describe the specific structure of the individual parts
composing the purifier – in the three scenarios considered. As far as the classifier

architectures are concerned, we redirect the reader to the original articles introducing
those models (i.e., those by Cui et al. [56] for scenarios (a) and (b), Wang et al. [55] for
scenario (c)).

During training, before being processed by the purifier encoder, input examples are
standardised according to the statistics of the respective training dataset.

Afterwards, they are fed to the disjoint input encoder (see subsection 3.2.3), whose archi-
tecture is shown in Table A.1. The same architecture is used in all scenarios considered.

Table A.1: Architecture for the disjoint input encoder of the purifier. The same architecture is

used in all scenarios considered. The architecture is represented layer by layer, from

input to output, in a PyTorch-like syntax. The following abbreviations are used:

Conv2D: 2-dimensional convolutional layer; ch_in: number of input channels;

ch_out: number of output channels; ks: kernel size; s: stride; p: padding; b: pres-

ence of a learnable bias term; BatchNorm2D: 2-dimensional batch normalisation

layer; affine: presence of learnable affine transform coefficients; slope: slope

for the activation function in the negative semi-domain.

Disjoint Input Encoder (all scenarios)

Conv2D(ch_in=3, ch_out=6, ks=3, s=2, p=1, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
Conv2D(ch_in=6, ch_out=12, ks=3, s=2, p=1, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)

The original input is also fed to the classifier. The corresponding internal representation
is extracted, preserving its layered structure. In order to improve the scalability of the
method, only a subset of classifier layers is used instead of the whole internal representa-
tion. Specifically, for each block of the WideResNet architecture, only the first layers
have been considered; two skip connections have also been added for good measure. The
exact list of those layers is reported in Table A.2.
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Table A.2: Classifier model (WideResNet-28-10) layer names used as (a subset of) the internal

representation fed to the layerwise convolutional encoder of the purifier. The names

reflect those used in the model implementation.

All scenarios

layer.0.block.0.conv_0
layer.0.block.0.conv_1
layer.0.block.1.conv_0
layer.0.block.1.conv_1
layer.0.block.2.conv_0
layer.0.block.2.conv_1
layer.0.block.3.conv_0
layer.0.block.3.conv_1
layer.1.block.0.conv_0
layer.1.block.0.conv_1
layer.1.block.0.shortcut
layer.1.block.1.conv_0
layer.1.block.1.conv_1
layer.1.block.2.conv_0
layer.1.block.2.conv_1
layer.1.block.3.conv_0
layer.1.block.3.conv_1
layer.2.block.0.conv_0
layer.2.block.0.conv_1
layer.2.block.0.shortcut
layer.2.block.1.conv_0
layer.2.block.1.conv_1
layer.2.block.2.conv_0
layer.2.block.2.conv_1
layer.2.block.3.conv_0
layer.2.block.3.conv_1
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Each extracted layerwise (pre)activation tensor has the shape of a multi-channel image,
which is processed – independently for each layer – by a different CNN whose individual
architecture is shown in Table A.3 (scenarios (a) and (b)) and Table A.4 (scenario (c)).

Table A.3: Architecture for the layerwise internal representation encoder of the purifier. The

architecture shown in this table is used in scenarios (a) and (b). The architecture

is represented layer by layer, from input to output, in a PyTorch-like syntax. The

following abbreviations are used: Conv2D: 2-dimensional convolutional layer;

ch_in: number of input channels; ch_out: number of output channels; ks: kernel

size; s: stride; p: padding; b: presence of a learnable bias term; BatchNorm2D:

2-dimensional batch normalisation layer; affine: presence of learnable affine

transform coefficients; slope: slope for the activation function in the negative

semi-domain. The abbreviation [ci] indicates the number of input channels for

the (pre)activation tensor of each extracted layer. The abbreviation ceil indicates

the ceiling integer rounding function.

Layerwise Internal Representation Encoder (scenarios (a) and (b))

Conv2D(ch_in=[ci], ch_out=ceil([ci]/2), ks=3, s=1, p=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
Conv2D(ch_in=ceil([ci]/2), ch_out=ceil([ci]/4), ks=3, s=1, p=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
Conv2D(ch_in=ceil([ci]/4), ch_out=ceil([ci]/8), ks=3, s=1, p=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)

The resulting tensors (still having the shape of multi-channel images) are then jointly
processed by a fully-connected subnetwork whose architecture is shown in Table A.5.
The value of fcrepr for the different scenarios considered is shown in Table A.10.

The compressed input and compressed internal representation so obtained are finally jointly
encoded by an additional fully-connected subnetwork whose architecture is shown in
Table A.6. The output is a tuple of means and standard deviations to be used to sample
the stochastic latent code z.

The sampler used for the generation of such latent variables z, during the training of the
purifier, is a reparameterised [75] Normal sampler z ∼ N (µ, σ). During inference, z is
sampled by reparameterisation from the i.i.d Standard Normal distribution z ∼ N (0, 1)
(i.e. from its original prior).

The architectures for the decoder of the purifier are shown in Table A.7 (scenarios (a) and
(b)) and Table A.8 (scenario (c)).

A.2.2 Hyperparameters
In the following section, we provide the hyperparameters used for adversarial example

generation and optimisation during the training of the purifier, and those related to the
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Table A.4: Architecture for the layerwise internal representation encoder of the purifier. The

architecture shown in this table is used in scenario (c). The architecture is represented

layer by layer, from input to output, in a PyTorch-like syntax. The following abbre-

viations are used: Conv2D: 2-dimensional convolutional layer; ch_in: number

of input channels; ch_out: number of output channels; ks: kernel size; s: stride;

p: padding; b: presence of a learnable bias term; BatchNorm2D: 2-dimensional

batch normalisation layer; affine: presence of learnable affine transform coeffi-

cients; slope: slope for the activation function in the negative semi-domain. The

abbreviation [ci] indicates the number of input channels for the (pre)activation

tensor of each extracted layer. The abbreviation ceil indicates the ceiling integer

rounding function.

Layerwise Internal Representation Encoder (scenario (c))

Conv2D(ch_in=[ci], ch_out=ceil([ci]/2), ks=3, s=1, p=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
Conv2D(ch_in=ceil([ci]/2), ch_out=ceil([ci]/4), ks=3, s=1, p=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
Conv2D(ch_in=ceil([ci]/4), ch_out=ceil([ci]/8), ks=3, s=1, p=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
Conv2D(ch_in=ceil([ci]/8), ch_out=ceil([ci]/16), ks=3, s=1, p=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)

Table A.5: Architecture for the fully-connected representation encoder of the purifier. The

architecture shown in this table is used in all scenarios considered. The architecture

is represented layer by layer, from input to output, in a PyTorch-like syntax. The

following abbreviations are used: Concatenate: layer concatenating its input

features; flatten_features: whether the input features are to be flattened

before concatenation; feats_in, feats_out: number of input and output

features of a linear layer; b: presence of a learnable bias term; BatchNorm1D:

1-dimensional batch normalisation layer; affine: presence of learnable affine

transform coefficients; slope: slope for the activation function in the negative semi-

domain. The abbreviation [computed] indicates that the number of features is

computed according to the shape of the concatenated input tensors. The value of

fcrepr for the different scenarios considered is shown in Table A.10.

Fully-Connected Representation Encoder (all scenarios)

Concatenate(flatten_features=True)
Linear(feats_in=[computed], feats_out=fcrepr, b=False)
BatchNorm1D(affine=True)
LeakyReLU(slope=0.2)
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Table A.6: Architecture for the fully-connected joint encoder of the purifier. The architecture

shown in this table is used in all scenarios considered. The architecture is represen-

ted layer by layer, from input to output, in a PyTorch-like syntax. The following

abbreviations are used: Concatenate: layer concatenating its input features;

flatten_features: whether the input features are to be flattened before con-

catenation; feats_in, feats_out: number of input and output features of a

linear layer; b: presence of a learnable bias term; BatchNorm1D: 1-dimensional

batch normalisation layer; affine: presence of learnable affine transform coef-

ficients; slope: slope for the activation function in the negative semi-domain.

The abbreviation [computed] indicates that the number of features is computed

according to the shape of the concatenated input tensors. The value of fjoint
for the different scenarios considered is shown in Table A.10. The last layer of the

network returns a tuple of 2 tensors, each independently processed – from the output

of the previous layer – by the two comma-separated sub-layers.

Fully-Connected Joint Encoder (all scenarios)

Concatenate(flatten_features=True)
Linear(feats_in=[computed], feats_out=fjoint, b=False)
BatchNorm1D(affine=True)
LeakyReLU(slope=0.2)
( Linear(feats_in=fjoint, feats_out=fjoint, b=True),

Linear(feats_in=fjoint, feats_out=fjoint, b=True) )

purifier model architectures. We also provide the hyperparameters for the Pgd+EoT
attack, which is used as a complementary tool for the evaluation of adversarial robustness.

Attacks

The hyperparameters used for the adversarial attacks described in subsection 3.2.4 are
shown in Table A.9. The value of ϵ∞ is fixed to ϵ∞ = 8/255. With the only exception of ϵ∞,
AutoAttack is to be considered a hyperparameter-free adversarial example generator.

Architectures

Table A.10 contains the hyperparameters that define the model architectures used as part
of the purifier, in the different scenarios considered.

Training

Table A.11 collects the hyperparameters governing the training of the purifier in the
different scenarios considered.

A.3 Ablation study on the need for adversarial training
In order to determine whether it is necessary to train on adversarial examples each of the
constituent parts of Carso, an ablation study is performed. The architecture of Carso
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Table A.7: Architecture for the decoder of the purifier. The architecture shown in this table is

used in scenarios (a) and (b). The architecture is represented layer by layer, from

input to output, in a PyTorch-like syntax. The following abbreviations are used:

Concatenate: layer concatenating its input features; flatten_features:

whether the input features are to be flattened before concatenation; feats_in,

feats_out: number of input and output features of a linear layer; b: presence

of a learnable bias term; ConvTranspose2D: 2-dimensional transposed convo-

lutional layer; ch_in: number of input channels; ch_out: number of output

channels; ks: kernel size; s: stride; p: padding; op: PyTorch parameter ‘output
padding’, used to disambiguate the number of spatial dimensions of the resulting

output; b: presence of a learnable bias term; BatchNorm2D: 2-dimensional batch

normalisation layer; affine: presence of learnable affine transform coefficients;

slope: slope for the activation function in the negative semi-domain. The val-

ues of fjoint and fcrepr for the different scenarios considered are shown in

Table A.10.

Decoder (scenarios (a) and (b))

Concatenate(flatten_features=True)
Linear(feats_in=[fjoint+fcrepr], feats_out=2304, b=True)
LeakyReLU(slope=0.2)
Unflatten(256, 3, 3)
ConvTranspose2D(ch_in=256, ch_out=256, ks=3, s=2, p=1, op=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
ConvTranspose2D(ch_in=256, ch_out=128, ks=3, s=2, p=1, op=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
ConvTranspose2D(ch_in=128, ch_out=64, ks=3, s=2, p=1, op=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
ConvTranspose2D(ch_in=64, ch_out=32, ks=3, s=2, p=1, op=0, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
ConvTranspose2D(ch_in=32, ch_out=3, ks=2, s=1, p=1, op=0, b=True)
Sigmoid()
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Table A.8: Architecture for the decoder of the purifier. The architecture shown in this table is used

in scenario (c). The architecture is represented layer by layer, from input to output,

in a PyTorch-like syntax. The following abbreviations are used: Concatenate:

layer concatenating its input features; flatten_features: whether the in-

put features are to be flattened before concatenation; feats_in, feats_out:

number of input and output features of a linear layer; b: presence of a learnable

bias term; ConvTranspose2D: 2-dimensional transposed convolutional layer;

ch_in: number of input channels; ch_out: number of output channels; ks: ker-

nel size; s: stride; p: padding; op: PyTorch parameter ‘output padding’, used

to disambiguate the number of spatial dimensions of the resulting output; b: pres-

ence of a learnable bias term; BatchNorm2D: 2-dimensional batch normalisation

layer; affine: presence of learnable affine transform coefficients; slope: slope

for the activation function in the negative semi-domain. The values of fjoint
and fcrepr for the different scenarios considered are shown in Table A.10.

Decoder (scenario (c))

Concatenate(flatten_features=True)
Linear(feats_in=[fjoint+fcrepr], feats_out=4096, b=True)
LeakyReLU(slope=0.2)
Unflatten(256, 4, 4)
ConvTranspose2D(ch_in=256, ch_out=256, ks=3, s=2, p=1, op=1, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
ConvTranspose2D(ch_in=256, ch_out=128, ks=3, s=2, p=1, op=1, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
ConvTranspose2D(ch_in=128, ch_out=64, ks=3, s=2, p=1, op=1, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
ConvTranspose2D(ch_in=64, ch_out=32, ks=3, s=2, p=1, op=1, b=False)
BatchNorm2D(affine=True)
LeakyReLU(slope=0.2)
ConvTranspose2D(ch_in=32, ch_out=3, ks=3, s=1, p=1, op=0, b=True)
Sigmoid()

Table A.9: Hyperparameters for the attacks used for training and testing the purifier The

Fgsm and Pdg attacks refer to the training phase (see subsection 3.2.4), whereas the

Pgd+EoT attack [74] refers to the robustness assessment pipeline. The entry CCE
denotes the Categorical CrossEntropy loss function. The ℓ∞ threat model is assumed,

and all inputs are linearly rescaled within [0.0, 1.0] before the attack.

Fgsm Pgd Pgd+EoT

Input clipping [0.0, 1.0] [0.0, 1.0] [0.0, 1.0]
# of steps 1 40 200
Step size ϵ∞ 0.01 0.007
Loss function CCE CCE CCE

# of EoT iterations 1 1 20
Optimiser SGD SGD
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Table A.10: Scenario-specific architectural hyperparameters for the purifier, as referred to in

Table A.5, Table A.6, Table A.7, and Table A.8.

Scenario (a) Scenario (b) Scenario (c)

fcrepr 512 512 768
fjoint 128 128 192

Table A.11: Hyperparameters used for training the purifier, grouped by scenario. The entry CCE
denotes the Categorical CrossEntropy loss function. The LR scheduler is stepped

after each epoch.

All scenarios Sc. (a) Sc. (b) Sc. (c)

Optimiser RAdam+Lookahead
RAdam β1 0.9
RAdam β2 0.999
RAdam ϵ 10−8

RAdam Weight Decay None
Lookahead averaging decay 0.8
Lookahead steps 6
Initial LR 5× 10−9

Loss function CCE

Sampled reconstructions per input 8

Epochs 200 200 250
LR warm-up epochs 25 25 31
LR plateau epochs 25 25 31
LR annealing epochs 150 150 188
Plateau LR 0.064 0.064 0.0128
Final LR 4.346× 10−4 4.346× 10−4 1.378× 10−4

β increase initial epoch 25 25 32
β increase final epoch 34 34 43
Batch size 5120 2560 1024
Adversarial batch fraction 0.5 0.15 0.01
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provided in section 3.3.1 is compared in terms of clean and robust accuracy with those
ablated as follows. A WideResNet-28-10 model is always used as the classifier.

• Both the initial instance of the classifier (that used to extract the internal representa-

tion) and the final (that used to actually perform classification) are trained on clean
examples only.

• The final classifier is trained on clean examples only, whereas the former is adversarially-
trained.

• The initial classifier is trained on clean examples only, whereas the latter is adversarially-
trained.

Results of such comparison are shown in Table A.12.

Table A.12: Results of the ablation study on the architecture of Carso. The Clean Acc. column

shows the test-set accuracy on uncorrupted inputs for the specific ablated model;

the randAA Acc. column shows the accuracy of the same model on test-set inputs

perturbed by means of the version of AutoAttack suitable for stochastic defences.

In the Type of ablation column, any entry different from None (original archi-

tecture) indicates the type of training used for the first (before the solidus) and

the second (after the solidus) classifier following input-to-output flow, within the

ablated Carso architecture.

Dataset Type of ablation Clean Acc. randAA Acc.

Cifar-10

clean/clean 0.7314 0.7070
AT/clean 0.6743 < 0.7070
clean/AT 0.8892 0.7975
None 0.8686 0.7613

Cifar-100

clean/clean 0.4395 0.4032
AT/clean 0.4373 < 0.4032
clean/AT 0.6876 0.6716
None 0.6806 0.6665

TinyImageNet-200 clean/AT 0.5677 0.5281
None 0.5632 0.5356

As it is possible to see, only the clean/AT ablation provides clean and adversarial accuracies
comparable to that of the original Carso architecture – and indeed, it even determines
an improvement on the Cifar-10 and Cifar-100 datasets. On the other hand, adversarial
training of the former instance of the classifier is necessary to achieve the best robustness
results on TinyImageNet-200.

Keeping in mind that the TinyImageNet-200 dataset is the closest representative con-
sidered for larger-scale datasets, and that empirical robust accuracy results only constitute
an upper bound of maximally attainable robust accuracy, we support the original Carso
architecture as the most effective for the achievement of adversarial robustness on generic
image classification datasets – even if at the cost of a slight clean accuracy penalty. Since
an adversarially-trained classifier would be used nonetheless as the latter, this does not
incur in increased training-time computational intensity.
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A.4 Further results and comparisons
The following section contains additional results and comparisons, in the form of tabular
data, that may be of interest to the reader.

In particular, Table A.14 compares the clean and robust accuracy of Carso with those of
the top-5 adversarial training defences according to the RobustBench [142] leaderboard1

and the top-5 (if available) purification-based defences according to Lee and Kim [74], for
Cifar-10/Cifar-100.

On shared columns, Table 3.2 can be considered a subset of Table A.14. As discussed
in subsection 3.3.2, Carso tops the comparison in terms of adversarial accuracy, while
maintaining a clean accuracy comparable with that of some purification-based models.

Table A.13, instead, investigates the same comparison across Carso and its classifier

model, for adversarially-pretrained networks different from those described in sec-
tion 3.3.1 – in particular, worse-performing. As it is possible to see, the increase in
end-to-end adversarial accuracy determined by Carso does not depend in absolute terms
on the quality of the original classifier model employed.

Table A.13: Clean (results in italic) and adversarial (results in upright) accuracy for additional

models to those described in subsection 3.3.2. The following abbreviations are

used: AT/Cl: clean accuracy for the adversarially-pretrained model used as the

classifier, when considered alone; C/Cl: clean accuracy for the Carso architecture;

AT/AA: robust accuracy (by the means of AutoAttack) for the adversarially-

pretrained model used as the classifier, when considered alone; C/randAA: robust

accuracy for the Carso architecture, when attacked end-to-end by AutoAttack

for randomised defences.

Dataset Classification model AT/Cl AT/AA C/Cl C/randAA

Cifar-10 Rebuffi et al. [54] 0.8733 0.6075 0.8152 0.7070
Gowal et al. [51] 0.8948 0.6280 0.8361 0.7335

Cifar-100 Rebuffi et al. [54] 0.6241 0.3206 0.5723 0.5580

1 At the time of chapter review, Git SHAhash: 78fcc9e48a07a861268f295a777b975f25155964.

https://github.com/RobustBench/robustbench/tree/78fcc9e48a07a861268f295a777b975f25155964
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Table A.14: Clean (results in italic) and adversarial (results in upright) accuracy for state-of-

the-art adversarial defences, compared to Carso. The Robust Acc. column shows

the best (i.e. lowest practically achieved) accuracy on test-set adversarial inputs, as

obtained by either the original publication introducing the method, evaluation by

AutoAttack as shown on the RobustBench leaderboard, evaluation of bespoke

adaptive attacks as shown on the RobustBench leaderboard, or (for purification

methods) evaluation by Pgd+EoT from Lee and Kim [74]. The Def. Type column

indicates whether the defence is based on adversarial training (AT), purification

(P), or both (AT+P). Results for Carso are the same as for Table 3.2.

Dataset Model Architecture Clean Acc. Robust Acc. Def. type

Cifar-10

Bartoldson et al. [58] WideResNet-94-16 0.9368 0.7371 AT
Amini et al. [213] MeanSparse WideResNet-94-16 0.9568 0.7310 AT
Peng et al. [57] RaWideResNet-70-16 0.9311 0.7107 AT
Wang et al. [55] WideResNet-70-16 0.9325 0.7069 AT
Bai et al. [214] ResNet-152 +WideResNet-70-16 0.9519 0.6971 AT
Lin et al. [145] Diffusion-based 0.9082 0.6641 P
Lee and Kim [74] Diffusion-based 0.9053 0.5688 P
Nie et al. [68] Diffusion-based 0.9043 0.5113 P
Hill, Mitchell and Zhu [66] Energy-based 0.8412 0.5490 P
Yoon, Hwang and Lee [72] Diffusion-based 0.8612 0.3711 P
Ours Carso (WideResNet-28-10) 0.8686 0.7613 AT+P

Cifar-100

Wang et al. [55] WideResNet-70-16 0.7522 0.4266 AT
Amini et al. [213] MeanSparse WideResNet-70-16 0.7513 0.4225 AT
Bai et al. [214] ResNet-152 +WideResNet-70-16 0.8308 0.4180 AT
Cui et al. [56] WideResNet-28-10 0.7385 0.3918 AT
Bai et al. [215] ResNet-152 +WideResNet-70-16 + Mixing Net 0.8521 0.3872 AT
Lin et al. [145] Diffusion-based 0.6973 0.4609 P
Ours Carso (WideResNet-28-10) 0.6806 0.6665 AT+P



Appendix B

Supplementary Material for Chapter 4

B.1 Appendix 1: Additional case study
In this Appendix, we present findings on additional cases that were not explored in depth
in the main text; they all refer to the off-resonant case when ωr = 15.

We begin by showing that, when considering the NN network, there is essentially no
advantage in using many driving parameters (R = 2, 7) compared to the simplest case
(R = 1), as illustrated in Figure B.1(A).

Next, we examine the stability of our results across networks of different sizes. Specifically,
we analyse networks with N = 4, 6, 8 sites, respectively, and compare the improvement
in the probability of reaching the sink when driving is applied. Figure B.1(B) shows
that, although the effectiveness decreases slightly for larger networks, the improvements
remain significant in all three cases.

Finally, in Figure B.1(C) we assess the robustness of our approach when decoherence
effects increase by one order of magnitude compared to the case studied in the main text
(see Figure 4.2(A)). The comparison reveals that this increase in decoherence does not
affect the conclusions of our analysis; specifically, for the NN network of size N = 4,
learning the couplings or adding driving are the most effective strategies to increase the
probability that the excitation reaches the sink.
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Figure B.1: For all plots we are in the off-resonant case ωr = 15. (A) Probability of reaching

the sink for a NN network with N = 4 sites unoptimised (grey continuous line)

and when drivings increasingly complex are learnt with R = 1, 2, 7 in see Eqs.

(4.2) and (4.2). (B) Study of the effectiveness of external driving with R = 1 for

different size of the network N = 4, 6, 8. (C) Probability of reaching the sink for a

NN network with N = 4 sites unoptimised, optimising drivings, couplings or site

energies with λN = 1 one order of magnitude larger than the one considered in

Figure 4.2 (A).



Appendix C

Supplementary Material for Chapter 5

C.1 On the limitations of invertible linear latent dy-
namics in the presence of absorbing states

In the following section, we consider a much simplified version of the state-space and
dynamical evolution rules described in subsection 5.3.1. In particular, we limit ourselves
to only one row of the chessboard with sticky edges, no additional scalar fj appended
to chessboard states, no partitioned observability, and only two opposite tasks along
the chessboard row: a rightward and a leftward moves. In such setting it is possible
to prove that there do not simultaneously exist an invertible encoder α and an affine
operator T per task acting in latent space (akin to those usually employed in Koopman
operator learning, or to those described in subsection 5.2.2 in the absence of φ) able to
correctly model both tasks. The setting is formalised in subsection C.1.1. The result is
first proved for a 1-dimensional latent space in subsection C.1.2, and then generalised in
subsection C.1.3 to the case of a low-dimensional latent space w.r.t. the number of states.

C.1.1 Setup and Notation
Consider a discrete state-space of n distinct positions. Each position i ∈ {0, . . . , n− 1} is
represented by a one-hot vector xi = ei ∈ {0, 1}n, where ei denotes the i-th standard
basis vector for Rn.

An encoder α : Rn → Rdk maps each state to a latent code:

zi = α(xi).

For the encoding to be invertible (i.e., for a decoder β : Rdk → Rn to recover the original
state), all latent codes must be distinct: zi ̸= zi′ for i ̸= i′.

Two dynamical tasks are defined on the state-space:

• Rightward shift: position i transitions to min(i+ 1, n− 1),

• Leftward shift: position i transitions to max(i− 1, 0).
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Both tasks feature an absorbing boundary: once the rightmost (or leftmost, respectively)
position is reached, the state remains the same.

We investigate whether there exist affine operators:

Tr(z) = Arz + br, Tl(z) = Alz + bl,

with Ar, Al ∈ Rdk×dk and br, bl ∈ Rdk , such that the latent dynamics exactly implement
both tasks:

Tr(zi) = zi+1 for i < n− 1, Tr(zn−1) = zn−1, (C.1)
Tl(zi) = zi−1 for i > 0, Tl(z0) = z0. (C.2)

Remark. Fixed points of affine maps

An affine map T (z) = Az + b has fixed points satisfying:

z = Az + b ⇐⇒ (I − A)z = b.

If I − A is invertible, the unique fixed point is:

z∗ = (I − A)−1b,

which can be any point in Rdk depending on the choice of A and b. This is in contrast to
linear maps (b = 0), whose only fixed point is the origin 0 (unless A has eigenvalue 1).

C.1.2 Case I: Scalar Latent Space (dk = 1)
Proposition 1. There exist no encoder α : Rn → R and affine operators Tr(z) = arz + br,
Tl(z) = alz + bl satisfying the dynamical requirements (C.1) and (C.2) with distinct latent

codes.

Proof. The proof proceeds in three steps.

Step 1: Interior invertibility. For interior states i ∈ {1, . . . , n− 2}, applying the rightward
operator followed by the leftward operator must return to the original state:

Tl(Tr(zi)) = zi.

Expanding:
al(arzi + br) + bl = alarzi + albr + bl = zi.

Since this identity must hold for at least n− 2 ≥ 2 distinct values of zi (assuming n ≥ 4),
we require:

alar = 1 and albr + bl = 0. (C.3)
Hence al = a−1

r and bl = −a−1
r br.

Step 2: Non-triviality. Suppose ar = 1. Then Tr(z) = z+ br, and the fixed point condition
Tr(zn−1) = zn−1 implies:

zn−1 + br = zn−1 =⇒ br = 0.
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But then Tr is the identity map, so zi+1 = Tr(zi) = zi∀i, contradicting the distinctness of
the latent codes. An analogous argument excludes al = 1.

Therefore ar ̸= 1 and al ̸= 1, ensuring that both operators have well-defined unique
fixed points.

Step 3: Fixed point coincidence. The absorbing boundary conditions require that zn−1 is
the fixed point of Tr and z0 is the fixed point of Tl:

zn−1 =
br

1− ar
, z0 =

bl
1− al

.

Substituting the constraints from (C.3):

z0 =
−a−1

r br
1− a−1

r

=
−a−1

r br
(ar − 1)/ar

=
−br

ar − 1
=

br
1− ar

= zn−1.

This contradicts the requirement that z0 ̸= zn−1.

C.1.3 Case II: Low-Dimensional Latent Space (dk ≪ n)
Proposition 2. There exists no encoder α : Rn → Rdk

with dk ≪ n and affine operators

Tr, Tl satisfying the dynamical requirements (C.1) and (C.2) with distinct latent codes.

Proof. The proof generalises the scalar case through three steps.

Step 1: Affine recurrence and Krylov subspace constraint. The interior rightward dynamics
zi+1 = Arzi + br defines an affine recurrence. Unrolling:

zi = Ai
rz0 +

i−1∑︂
j=0

Aj
rbr.

Let c = (I − Ar)
−1br denote the fixed point of Tr (assuming I − Ar is invertible; the

singular case is addressed in Step 2). Define centred coordinates z̃i = zi − c. Then:

z̃i+1 = zi+1 − c = Arzi + br − c = Ar(zi − c) + (br − c+ Arc) = Arz̃i,

where we used c = Arc + br. Hence z̃i = Ai
rz̃0, and the centred dynamics are purely

linear.

By the Cayley–Hamilton theorem, every matrix satisfies its own characteristic polynomial.
For Ar ∈ Rdk×dk :

Adk
r = cdk−1A

dk−1
r + cdk−2A

dk−2
r + · · ·+ c0I

for some coefficients c0, . . . , cdk−1 ∈ R. Consequently, for i ≥ dk:

z̃i = Ai
rz̃0 =

dk−1∑︂
j=0

γjA
j
rz̃0 =

dk−1∑︂
j=0

γjz̃j
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for some coefficients γj . The sequence {z̃i}n−1
i=0 therefore lies in the Krylov subspace

Kd(z̃0, Ar) = span{z̃0, Arz̃0, . . . , A
dk−1
r z̃0},

which has dimension at most dk. Since zi = z̃i + c, the original latent codes lie in a
dk-dimensional affine subspace of Rd.

Step 2: Interior invertibility. For interior states i ∈ {1, . . . , n− 2}, the composition Tl ◦ Tr

must act as the identity:

Tl(Tr(zi)) = Al(Arzi + br) + bl = AlArzi + Albr + bl = zi.

This requires:

AlArzi = zi and Albr + bl = 0 ∀i ∈ {1, . . . , n− 2}. (C.4)

When dk ≪ n, there are n− 2≫ dk interior states. By the Krylov subspace constraint,
the latent codes {z1, . . . ,zn−2} span a subspace of dimension at most d. Generically,
they span exactly Rd. Therefore, the condition AlArz = z for all z in this spanning set
implies:

AlAr = I,

i.e., Al = A−1
r . The translation constraint then gives bl = −A−1

r br.

Step 3: Fixed point coincidence. The absorbing boundary conditions require that zn−1 is a
fixed point of Tr and z0 is a fixed point of Tl:

zn−1 = (I − Ar)
−1br, z0 = (I − Al)

−1bl.

Substituting Al = A−1
r and bl = −A−1

r br:

z0 = (I − A−1
r )−1(−A−1

r br).

To simplify (I − A−1
r )−1, note that:

I − A−1
r = A−1

r (Ar − I),

hence:
(I − A−1

r )−1 = (Ar − I)−1Ar.

Substituting:

z0 = (Ar − I)−1Ar(−A−1
r br) = −(Ar − I)−1br = (I − Ar)

−1br = zn−1.

This contradicts the requirement that z0 ̸= zn−1.



Appendix D

Supplementary Material for Chapter 6

D.1 Data

The Mnist dataset consists of pictures of handwritten Arabic numerals, from 0 to 9, each
represented as a grayscale image of size 28× 28. FashionMnist has been designed as a
drop-in replacement to Mnist, offering a more challenging classification task. It consists
of ten classes of clothing items, still represented as grayscale images with a resolution of
28× 28. Both datasets provide 60000 training and 10000 test images, balanced in terms
of per-class numerosity.
Svhn contains coloured images of digits from house numbers, captured by Google
StreetView. The images are composed of 32× 32 RGB-encoded pixels. This dataset is
slightly larger than the previous two, as it contains 73257 data-points in the training set
and 26032 in the test set.
The Svhn images have been cropped in order to center the digit of interest within the
frame. However, the presence of adjacent digits and other distracting elements, that
have been kept within the images, introduces an additional layer of complexity when
compared to Mnist and FashionMnist, where the subjects are prominently displayed
against a uniform black background. The Cifar-10 consists of 60000 coloured natural
images categorised in 10 balanced classes. The dataset is split in 50000 training images
and 10000 test images. Each image, like Svhn has a resolution of 32×32 for each channel.
Compared to previous datasets, this is the most challenging one for a fully connected
network. The dataset split employed is provided by the TorchVision framework [216].

D.2 Training details

All our models (FF, BP/FF and BP), on all datasets (Mnist, FashionMnist, Svhn and
Cifar-10), have been optimised using Adam [176] with β1 = 0.9 and β2 = 0.999,
implemented in PyTorch [127]. A hyperparameter search has been performed to achieve
sufficient accuracy for each model across all datasets. Every model was trained using
batches of size 1024.
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Table D.1: Hyperparameters selected to train our models.

Model Mnist FashionMnist Svhn Cifar-10
Epochs 1200 100 1000 1000

FF Learning rate 0.01 0.01 0.0001 0.0001

Epochs 300 300 200 200
BP/FF Learning rate 0.0001 0.0001 0.0001 0.0001

Epochs 80 80 80 80
BP Learning rate 0.0001 0.0001 0.0001 0.0001

D.3 Statistical test of ensemble assignment
To assign a unit i to a class-ensemble c, we compare its average activation on correct
responses xi,c against its leave-one-out average LOOi,c (as described in subsection 6.2.5).
We define

δi,c = xi,c − 2 · LOOi,c.

If δi,c > 0, the unit is assigned to the ensemble for class c. To assess the statistical
significance of each assignment, we compute a p-value by building an empirical null
distribution. Specifically, we shuffle each relevant representation matrix row-wise 200
times, recalculate δrandi,c for each shuffle, and then define the p-value as the fraction of
these shuffled values exceeding the observed δi,c. We applied this test to every unit
assigned to an ensemble across all model/dataset/layer/run combinations summarised
in Table 6.3, totaling ≈ 457,000 units. Of these, only 500 (about 1 in 1000) had p > 0.05.
Most of those higher-p units occurred in Layer 2 of BP/FF on Cifar-10, representing
≈ 2.6% of the assigned units in that specific configuration.

D.4 Activation patterns in deeper layers
In subsection 6.3.2 we claimed that in FF and BP/FF the images of a given category
activate consistently a small set of units that we named ensembles, that share similarities
to what is observed in sensory cortices. We reported in Figure 6.1 the activation map
for Layer 1 (the first hidden layer) of FF trained on the Mnist dataset, and observed
that very sparse ensembles emerge. In this section we show, in a similar fashion, the
representations for Layers 2 and 3 (Figure D.1 and Figure D.2, respectively). We find high
sparsity also for deeper layers of this specific network; a qualitatively similar conclusion
is reached for FF models trained on FashionMnist, Svhn and Cifar-10. In BP/FF models
a similar sparsity levels are observed, with the exception of the last layer that turns out
to be non-sparse in all the datasets considered (see Table 6.3).
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Figure D.1: Activation patterns in a Multi-Layer Perceptron trained with the Forward-Forward

algorithm, on the Mnist dataset. The image represents the activation map for

neurons in Layer 2 for all images, grouped by class. A blue dot in position (x, y)
indicates that neuron x is activated by input y; colour scale represents the intensity

of such activation (incorrectly classified samples have been removed). Horizontal

bands mark different categories; dark blue vertical lines mark active neurons. Each

input category activates consistently a specific sets of neurons (ensemble). The

sparsity measured according with the definition provided in subsection 6.2.5 is 0.84.

Figure D.2: Activation reported as in Figure D.1, for Layer 3. Notice that there are only few units

that activates significantly and does not play a role in discriminating categories.

The role of this layer, in this experiment seems, not related to the classification task.

Despite the low number of active units, the sparsity level of the representation is

lower than that of Layer 2 (S = 0.67), due to the noise of the inactive units.
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D.5 Activation patterns in different models

In Figure 6.1 (Panel C) we show the activation patterns in Layer 1 of FF trained on Mnist.
For the purpose of a qualitative comparison, we show here analogous patterns for BP/FF
and BP (see Figure D.3 and Figure D.4).

Figure D.3: Activation pattern in Layer 1 of the BP/FF model trained on the Mnist dataset.

The sparsity measure is 0.89, comparable with the correspondent first layer of the

FF model, reported in Figure 6.1, Panel C.

Figure D.4: Activation pattern in Layer 1 of the BP model trained on the Mnist dataset. The

sparsity measure is 0.32 (non-sparse representation), about
1
3 of the sparsity level

measured in the analogous experiment with FF and BP/FF.
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D.6 Further results on representations of unseen cat-
egories and their ensembles

We showed in subsection 6.3.4 that a FF model trained on the FashionMnist dataset
– deprived of one category – can respond at test time to this unseen category with an
ensemble (Figure 6.4).
We report here the results of similar experiments, removing one category at a time. It
turns out that, in each of the ten possible cases (we performed a single run for each
category), the representations of the unseen category form an ensemble; we show three
examples in Figure D.5, different from the example shown in (Figure 6.4). It is with this
situation in mind that we refer to “the ensembles related to unseen categories”.

Figure D.5: Ensembles elicited by the FF model trained on FashionMnist deprived of one

category (we show three examples: Pullover, Coat and Ankle boot). We

report for the three categories, the activation value of each neuron in the first hidden

layer (Layer 1), averaged on all images of the unseen category. Neuron index on the

x axis; average activation on the y axis. Blue dots indicate units that are considered

active according to the method described in subsection 6.2.5.

When an unseen category forms an ensemble, it generally exhibits a high level of integ-
ration with the ensembles associated with the categories encountered during training.
This integration implies that it can share common units with ensembles belonging to
related categories. We show in Figure D.6 how the ensembles of missing categories (same
examples as in Figure D.5) integrate – by sharing units – with the other ensembles.

Figure D.6: Shared units between the ensembles of unseen categories and the ensembles of

categories seen during training (stripes delimited by the red lines). The results for

Pullover, Coat and Ankle boot are shown.
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Overall, these result relates to biological neural networks [36, 103], where ensembles
appear to be the functional building block of brain representations even in the absence of
known stimuli.

D.7 Performance on unseen categories with linear probes
In this section, we explore the ability of a linear probe to discriminate between categories,
including those unseen during training, leveraging the models’ internal representations.
Focusing on the FashionMnist dataset, we trained 10 models – each excluding a different
category – for all of FF, BP/FF, and BP. A linear classifier was then trained on the training
set representations. We note here that for this experiment FF and BP/FF were provided
with the same data as BP, i.e. images without any pixels encoding positive and negative
labels. Our findings, reported in Table D.2 reveal that the linear probes successfully
recover good accuracy levels in almost all cases. This result holds consistently across
all categories and models. We also report in Table D.3 the performance of linear probes
averaged across all categories, seen and unseen, including a comparison with baseline
models. This shows that the decoding performance of linear probes trained on models
in which a category is held out during training is close to the original one (without any
held out category).

Table D.2: Linear probe accuracy on the missing category for models trained without that

category.

Missing category
Model 0 1 2 3 4 5 6 7 8 9

FF 0.803 0.901 0.719 0.817 0.714 0.869 0.508 0.876 0.920 0.889
BP/FF 0.787 0.939 0.699 0.856 0.742 0.894 0.454 0.836 0.947 0.937

BP 0.863 0.962 0.721 0.933 0.843 0.967 0.632 0.945 0.970 0.957

Table D.3: Linear probe accuracy - averaged across all the categories - for models trained

without one category. The Avg column reports the average across all the ten cases.

The Baseline corresponds to the accuracy achieved by the model when all categories

are included during training.

Missing category

Model 0 1 2 3 4 5 6 7 8 9 Avg Baseline

FF 0.854 0.857 0.847 0.854 0.849 0.851 0.843 0.851 0.858 0.862 0.852 0.849
BP/FF 0.868 0.869 0.859 0.864 0.863 0.866 0.859 0.856 0.866 0.858 0.864 0.877

BP 0.880 0.890 0.883 0.885 0.883 0.888 0.887 0.887 0.886 0.889 0.886 0.892

D.8 Enforcing sparsity in the BP model
In the FF and BP/FF models sparsity emerges without any explicit regularisation or
constraint. Instead, if one wanted to promote sparse representations in the BP model, one
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established way is by means of ℓ1 regularisation on the activations [197]. In this section,
we present the results obtained by training a BP model using the same hyperparameters as
those employed in the main analysis and ℓ1 regularisation on the activations, with weight
set to 2.5× 10−6. We measure the layer-wise sparsity in the Mnist and FashionMnist
datasets, and observe (Table D.4) sparsity values comparable – and often higher – than
the ones that spontaneously emerge with FF and BP/FF, reported in Table 6.2.

Table D.4: Sparsity of the BP model with ℓ1 norm regularisation applied to layer activations.

Model Layer Mnist FashionMnist
1 0.971 0.955

BP regularised 2 0.802 0.787
3 0.813 0.781

However, despite having very high sparsity levels, the representations learned by BP
with ℓ1 regularisation and by unregularised FF display significant differences. Figure D.7
reports the Jaccard similarity between Mnist class ensembles (computed using the
procedure of subsection 6.2.5) for the first layer of the regularised BP model (left) and
the FF model (right). FF ensembles are highly specific, as they are completely disjoint,
while in the case of regularised BP there is a non-zero overlap for any pair of classes,
regardless of their visual dissimilarity.

Figure D.7: Jaccard similarity between first-layer ensembles on the Mnist dataset. Left: BP
model with ℓ1 regularisation. Right: FF model.
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D.9 Representation similarity

D.9.1 Model comparison
In this section, we analyze the similarity between representations produced by FF, BP/FF
and BP. We employ three established representation similarity metrics, namely SVCCA
[217], CKA [218] and Distance Correlation (dCor) [219]. We consider 5 training runs
with independent weight initialisations for each model and compare representations
layer-by-layer. The results, reported in Table D.5, show that:

• CKA and dCor exhibit greater variability than SVCCA across models and layers.
We hypothesize that this may be because SVCCA is a linear metric, making it less
informative in the presence of nonlinear correlation patterns;

• The first layer is almost always the most similar, possibly due to the fact that it is
the one closest to the input, which is shared between models;

• Focusing on the second layer, FF and BP/FF are consistently the most similar pair
of models according to CKA and dCor. The same does not apply for the third layer,
which is in fact non-sparse in BP/FF (Table 6.3).

Table D.5: Representation similarity between models. Results are averaged over 5 runs with

independent random weight initialisation for each configuration.

FF v BP/FF FF v BP BP/FF v BP

Dataset Metric 1 2 3 1 2 3 1 2 3
Mnist SVCCA 0.48 0.38 0.45 0.55 0.47 0.52 0.48 0.39 0.45

CKA 0.79 0.53 0.04 0.53 0.49 0.23 0.62 0.43 0.02
dCor 0.85 0.90 0.13 0.61 0.68 0.45 0.70 0.64 0.17

FashionMnist SVCCA 0.55 0.35 0.33 0.53 0.36 0.37 0.47 0.37 0.41
CKA 0.60 0.63 0.24 0.51 0.40 0.34 0.60 0.40 0.12
dCor 0.80 0.76 0.10 0.59 0.51 0.50 0.81 0.59 0.11

Svhn SVCCA 0.57 0.55 0.55 0.56 0.53 0.49 0.58 0.50 0.51
CKA 0.47 0.40 0.27 0.32 0.17 0.04 0.72 0.21 0.01
dCor 0.60 0.46 0.09 0.45 0.27 0.13 0.90 0.38 0.03

Cifar-10 SVCCA 0.54 0.53 0.54 0.53 0.50 0.50 0.56 0.46 0.47
CKA 0.46 0.46 0.17 0.37 0.17 0.04 0.65 0.25 0.02
dCor 0.64 0.53 0.06 0.49 0.22 0.07 0.86 0.39 0.06

D.9.2 Layer comparison
In Figure D.8 we report the CKA similarity between different layers of FF models, averaged
over 10 independent training runs. Across all datasets, similarity is noticeably higher for
layers 1 and 2 than for layers 2 and 3. The only partial exception is FashionMnist, that
displays a much narrower gap. These results align with those in Table 6.2: FashionMnist
is the only dataset in which sparsity in the second layer is lower than in the third one.
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Figure D.8: CKA similarity between layers in the FF model, averaged over 10 independent

training runs.

D.10 Forward-Forward with ℓ1 goodness function
We investigated the effect of a different choice of goodness function by switching to the
ℓ1 norm. Consequently, we adjusted the normalisation for subsequent layers, performed
according to the ℓ1 norm as well. We trained 10 instances of FF and of BP/FF on Mnist
and on FashionMnist datasets. The hyperparameters were set as follows: learning rate:
0.001, epochs: 300, batch size: 1024. With this setup, we train the FF and BP/FF models
on the Mnist and FashionMnist datasets.

Our observations indicate that the accuracy achieved by both the FF and BP/FF models
is comparable with the ℓ2 results reported in Table 6.1. The level of sparsity is consistent
with the findings presented in Table 6.2. However, in the case of the BP/FF model, the
third layer exhibits significantly higher sparsity compared to when using the ℓ2 norm.
Despite this increase, sparsity remains insufficient for recognizing robust and consistent
ensembles. The average fraction of active units per layer is reported in Table D.8. Results
regarding ensemble overlap between visually similar classes in the FF model are reported
in Figure D.9. The findings of subsection 6.3.3 remain valid when employing the ℓ1 norm
as a goodness function.

Table D.6: Test-set classification accuracy for the models FF and BP/FF, using a goodness

function based on the ℓ1 norm. Results expressed as mean ± std. dev. over 10 runs

with independent randomised weight initialisation.

Dataset FF BP/FF

Mnist 0.949± 0.002 0.965± 0.001
FashionMnist 0.859± 0.002 0.865± 0.002
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Table D.7: Average sparsity for FF and BP/FF with ℓ1 goodness function, computed according

to the definition given in subsection 6.2.5. Results are expressed as mean ± std. dev.

computed over 10 runs with independent random weights initialisation.

Model Layer Mnist FashionMnist
1 0.887± 0.002 0.83± 0.001

FF 2 0.61± 0.005 0.647± 0.007
3 0.61± 0.012 0.532± 0.012

1 0.944± 0.002 0.921± 0.003
BP/FF 2 0.915± 0.005 0.919± 0.003

3 0.441± 0.009 0.408± 0.011

Table D.8: Average fraction of units taking part in ensembles for FF and BP/FF with ℓ1 goodness

function. Ensemble sizes are averaged across all categories, divided by the number

of neurons in a layer, and then expressed in %. Ensembles are defined according to

the LOO method presented in subsection 6.2.5. Results are expressed as mean ± std.

dev.. In the third layer of BP/FF the representation is non-sparse.

Model Layer Mnist FashionMnist
1 4.22± 0.09 7.48± 0.11

FF 2 19.93± 0.53 19.44± 0.53
3 17.24± 0.85 23.09± 1.15

1 3.88± 0.16 5.93± 0.21
BP/FF 2 3.36± 0.29 5.26± 0.32

3 - -

Figure D.9: Jaccard similarity index between first-layer ensembles. Results obtained using the

ℓ1 norm as a goodness function in the FF model on the FashionMnist dataset.
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